Publications by authors named "Xingcan Shen"

High locoregional recurrence rates and potential wound infections remain a significant challenge for postoperative breast cancer patients. Herein, we developed a dual-network hyaluronic acid (HA) nanocomposite hydrogel composed of herring sperm DNA (hsDNA) bridged methacrylated HA (HAMA) and FeMg-LDH-ppsa nanohybrid chelated catechol-modified HA (HADA) for the prevention of breast cancer recurrent, anti-infection, and promoting wound healing. Dynamic reversible hsDNA cross-linking combined with metal-catechol chelating renders the hydrogel injectability, rapid self-healing ability, and enhanced mechanical properties.

View Article and Find Full Text PDF

Insufficient drug delivery efficiency in vivo and robust drug resistance are two major factors to induce suboptimal efficacy in chemotherapy of osteosarcoma (OS). To address these challenges, we developed polysaccharide hyaluronic acid (HA)-functionalized ruthenium nanoaggregates (Ru NAs) to enhance the chemotherapy of doxorubicin (DOX) for OS. These NAs, comprising Ru nanoparticles (NPs) and alendronate-modified HA (HA-ALN), effectively load DOX, resulting in DOX@Ru-HA-ALN NAs.

View Article and Find Full Text PDF

Hydrogen persulfide (HS) plays a significant role in redox biology and signal transduction; therefore, quantitative visualization of HS in the deep tissue of living organisms is essential for obtaining reliable information about relevant pathophysiological processes directly. However, currently reported HS probes are unsuitable for this purpose because of their poor selectivity for many polysulfide species or their short wavelength, which hinders precise imaging in deep tissues. Herein, for the first time, we report a unique HS-mediated dithiole formation reaction.

View Article and Find Full Text PDF

Monitoring of cell viability plays a key role in cancer therapy and evaluation of drug efficiency. Mitochondria and lysosomes are involved in regulating cell viability in many biological processes such as apoptosis, necrosis, autophagy, and cell proliferation. Thus, there is an emerging interest in the real-time evaluation of cell viability in both mitochondria and lysosomes.

View Article and Find Full Text PDF

Copper-mediated programmed cell death, which influences the regulation of tumor progression, is an effective approach for antitumor molecular therapy. Unlike apoptosis, copper complex-induced cuproptosis by lipid-acylated protein aggregation triggers the mitochondrial proteotoxic stress response, which could be associated with immunomodulation. However, it remains a great challenge to understand the distinctive molecular mechanisms that presumably activate immunity by cuproptosis.

View Article and Find Full Text PDF

The development of rapidly distributed and retained probes within the kidneys is important for accurately diagnosing kidney diseases. Although molecular imaging shows the potential for non-intrusively interrogating kidney disease-related biomarkers, the limited kidney contrast of many fluorophores, owing to their relatively low distribution in the kidney, hinders their effectiveness for kidney disease detection. Herein, for the first time, an amino-functionalization strategy is proposed to construct a library of kidney-targeting fluorophores NHcy with tunable emissions from NIR-I to NIR-II.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) imaging integrating photothermal and photodynamic therapy (PTT/PDT) is a promising approach for achieving accurate diagnosis and effective treatment of cancers. However, most available Raman reporters show multiple signals in the fingerprint region, which overlap with background signals from cellular biomolecules. Herein, a 4T1 cell membrane-enveloped gold nanorods-manganese porphyrins system (GMCMs) is designed and successfully fabricated as a biomimetic theranostic nanoplatform.

View Article and Find Full Text PDF

An obstacle in current tumor immunotherapies lies in the challenge of achieving sustained and tumor-targeting T cell immunity, impeded by the limited antigen processing and cross-presentation of tumor antigens. Here, we propose a hydrogel-based multicellular immune factory within the body that autonomously converts tumor cells into an antitumor vaccine. Within the body, the scaffold, formed by a calcium-containing chitosan hydrogel complex (ChitoCa) entraps tumor cells and attracts immune cells to establish a durable and multicellular microenvironment.

View Article and Find Full Text PDF

Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC).

View Article and Find Full Text PDF

The tumor immunosuppressive microenvironment (TIME) and uncontrollable release of antigens can lower the efficacy of nanovaccine-based immunotherapy (NBI). Therefore, it is necessary to develop a new strategy for TIME reshaping and controllable release of antigens to improve the NBI efficacy. Herein, an acidity-responsive Schiff base-conjugated polyphenol-coordinated nanovaccine was constructed for the first time to realize bidirectional TIME reshaping and controllable release of antigens for activating T cells.

View Article and Find Full Text PDF

Due to the difficulty of accurately characterizing properties such as the molecular weight () and grafting density () of gradient brushes (GBs), these properties are traditionally assumed to be uniform in space to simplify analysis. Applying a stochastic reaction model (SRM) developed for heterogeneous polymerizations, we explored surface-initiated polymerizations (SIPs) with initiator gradients in lattice Monte Carlo simulations to examine this assumption. An initial exploration of SIPs with 'homogeneously' distributed initiators revealed that increasing slows down the polymerization process, resulting in polymers with lower molecular weight and larger dispersity () for a given reaction time.

View Article and Find Full Text PDF

Hypoxia is a critical factor for restricting photodynamic therapy (PDT) of tumor, and it becomes increasingly severe with increasing tissue depth. Thus, the relief of deep tumor hypoxia is extremely important to improve the PDT efficacy. Herein, tumor microenvironment (TME)-responsive size-switchable hyaluronic acid-hybridized Ru nanoaggregates (HA@Ru NAs) were developed via screening reaction temperature to alleviate deep tumor hypoxia for improving the tumor-specific PDT by the artful integration multiple bioactivated chemical reactions in situ and receptor-mediated targeting (RMT).

View Article and Find Full Text PDF

The study of cross-catenated metallacages, which are complex self-assembly systems arising from multiple supramolecular interactions and hierarchical assembly processes, is currently lacking but could provide facile insights into achieving more precise control over low-symmetry/high-complexity hierarchical assembly systems. Here, we report a cross-catenane formed between two position-isomeric Pt(II) metallacages in the solid state. These two metallacages formed [2]catenanes in solution, whereas a 1:1 mixture selectively formed a cross-catenane in crystals.

View Article and Find Full Text PDF

Dual-labeled single fluorescent probes are powerful tools for studying autophagy on the molecular scale, yet their development has been hampered by design complexity and a lack of valid strategies. Herein, for the first time, we introduce a combinatorial regulation strategy to fabricate dual-labeled probes for studying autophagy by integrating the specific organelle-targeting group and the functional fluorescence switch into a pentacyclic pyrylium scaffold (latent dual-target scaffold). For proof of concept, we prepared a range of dual-labeled probes () that display different emission colors in duple organelles.

View Article and Find Full Text PDF

Porphyrins and their derivatives are widely used as photosensitizers and sonosensitizers in tumor treatment. Nevertheless, their poor water solubility and low chemical stability reduce their singlet oxygen (O) yield and, consequently, their photodynamic therapy (PDT) and sonodynamic therapy (SDT) efficiency. Although strategies for porphyrin molecule assembly have been developed to augment O generation, there is scope for further improving PDT and SDT efficiencies.

View Article and Find Full Text PDF
Article Synopsis
  • * The aerogels are designed to enhance the exposure of Se binding sites and utilize a well-dispersed, amorphous structure, resulting in high binding capacity (943.4 mg·g) and efficiency (99.5%) for Hg(II) uptake.
  • * Additionally, the stable nature of the formed HgSe compounds from the interaction minimizes environmental concerns when disposing of the spent Se/CNF adsorbents.
View Article and Find Full Text PDF

The development of injectable self-healing adhesive hydrogel dressings with excellent bactericidal activity and wound healing ability is urgently in demand for combating biofilm infections. Herein, a multifunctional hydrogel (QP/QT-MB) with near-infrared (NIR) light-activated mild photothermal/gaseous antimicrobial activity was developed based on the dynamic reversible borate bonds and hydrogen bonds crosslinking between quaternization chitosan (QCS) derivatives alternatively containing phenylboronic acid and catechol-like moieties in conjunction with the encapsulation of BNN6-loaded mesoporous polydopamine (MPDA@BNN6 NPs). Given the dynamic reversible cross-linking feature, the versatile hybrid hydrogel exhibited injectability, flexibility, and rapid self-healing ability.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) acts as a gas transporter and cell protector and plays a role in a number of disorders and signaling processes. Given that the half-life of HS in biological systems is between seconds and minutes, the development of rapid and accurate technologies for reliable monitoring HS levels and dynamics in organisms is critical. However, it is still difficult to design innovative near-infrared fluorescent probes that can quickly and accurately detect HS.

View Article and Find Full Text PDF

Metal complexes have shown promise as photosensitizers for cancer diagnosis and therapeutics. However, the vast majority of metal photosensitizers are not ideal and associated with several limitations including pharmacokinetic limitations, off-target toxicity, fast systemic clearance, poor membrane permeability, and hypoxic tumour microenvironments. Metal complex functionalized nanomaterials have the potential to construct multifunctional systems, which not only overcome the above defects of metal complexes but are also conducive to modulating the tumour microenvironment (TME) and employing combination therapies to boost photodynamic therapy (PDT) efficacy.

View Article and Find Full Text PDF

Bismuth sulfide is widely used as an n-type semiconductor material in photocatalytic reactions. However, bismuth sulfide has poor absorption in the near-infrared region and low charge separation efficiency, limiting its application in phototherapy and sonodynamic therapy (SDT). In this study, we successfully synthesized an "all-in-one" phototheranostic nanoplatform, namely BiS-Au@HA, based on a single second near-infrared (NIR-II) light-responsive Schottky-type BiS-Au heterostructure for photoacoustic (PA) imaging-guided SDT-enhanced photodynamic therapy (PDT)/photothermal therapy (PTT).

View Article and Find Full Text PDF

Increasing the reactive oxygen species (ROS) content at the tumor site is one of the effective strategies to promote intracellular oxidative stress and improve therapeutic efficiency. Herein, an atomically precise cinnamaldehyde-derived metal-organic Cu(I) complex (denoted as DC-OD-Cu) was rationally constructed. DC-OD-Cu could preferentially accumulate in the mitochondria of HeLa cells due to the mitochondria-targeting ability of triphenylphosphine, which was accompanied by the generation of large amounts of highly toxic hydroxyl radicals (˙OH) Cu(I)-mediated Fenton-like reactions.

View Article and Find Full Text PDF

Zn and HS are essential to maintain normal prostate function, and sometimes can evolve into weapons to attack and destroy prostate cancer (PCa) cells. Nevertheless, how to achieve the targeted and effective release of Zn and HS, and reverse the concentration distribution within PCa tumor cells still highly challenging. Herein, combined with these pathological characteristics of prostate, we proposed a tumor microenvironment (TME) responsive Zn-interference and HS-mediated gas synergistic therapy strategy based on a nanoplatform of tannic acid (TA) modified zinc sulfide nanoparticles (ZnS@TA) for the specific treatment of PCa.

View Article and Find Full Text PDF

Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy.

View Article and Find Full Text PDF

Using solar energy to drive catalytic conversion of CO into value-added chemicals has great potential to alleviate the global energy shortage and anthropogenic climate change. Herein, a "hitting three birds with one stone" strategy was reported to prepared boron-doped g-CN/TiO composite (BCT) by a one-step thermal reduction process. A series of characterizations showed that the composite catalyst has extended full-spectrum absorption, rapid photogenerated charge separation, and outstanding CO photoreduction performance (265.

View Article and Find Full Text PDF

Natural biopolymers can be controllably synthesized in organisms and play important roles in biological activities. Inspired by this, the manipulation of biosynthesis of functional polymers will be an important way to obtain materials for meeting biological requirements. Herein, biosynthesis of functional conjugated polymer at the tumor site was achieved via the utilization of specific tumor microenvironment (TME) characteristics for the first time.

View Article and Find Full Text PDF