Publications by authors named "XingZhang Luo"

Alternative chemicals to bisphenol A (BPA), such as bisphenol F (BPF), have been detected in aquatic environments worldwide and can potentially exert negative effects on aquatic organisms. To evaluate the toxic effects of the exposure of BPF on submerged macrophytes and biofilms, Ceratophyllum demersum L. (C.

View Article and Find Full Text PDF

Light plays a crucial role in blue-green algae bloom formation in lakes, while suspended solids (SS) influence underwater light intensity. This study investigates the integrated effects of SS concentrations (0-125 mg/L) on Microcystis aeruginosa in natural conditions. Results show that SS inhibits cyanobacterial growth above 100 mg/L, with 25-75 mg/L favoring bloom formation.

View Article and Find Full Text PDF

Microcystis aeruginosa is the main toxic strain in cyanobacterial blooms, and the recruitment stage in its temperature-dependent seasonal succession is considered as the key to its subsequent growth. In this study, a protocol with specific temperature settings was developed as the simulated recruitment stage in order to investigate and confirm the superior inhibitory effects of allelochemicals on M. aeruginosa at that stage of recruitment.

View Article and Find Full Text PDF

This experiment prepared magnetic composite siderophores (DMPs) with strong magnetism, excellent adsorption capacity, and high specific surface area. Exploring the synergistic effect of magnetic nanoparticles and siderophores on Microcystis aeruginosa growth under iron-deficient condition, by utilizing the characteristics of the three-layer core-shell structure of DMPs. This study elucidated the potential mechanism by which DMPs promote the cyanobacterial growth through physiological indicators and transcriptome analysis.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms).

View Article and Find Full Text PDF

With the rapid development of industry and agriculture, excessive nitrogen and phosphorus released into natural surface water have caused eutrophication. Applying submerged plants to manage eutrophic water has attracted widespread attention. However, there are limited studies on the effects of different nitrogen and phosphorus in the water environment on submerged plants and their epiphytic biofilm.

View Article and Find Full Text PDF

The interaction between microplastics (MPs) and microorganisms may alter the distribution of antibiotic resistance genes (ARGs) in water and increase the ecological risk of drinking water sources. To investigate the characteristics of MPs geographical distribution and its potential ecological risk in typical urban water, this study was conducted in Zhushan Bay, and we carried out a combination of tests to analyze the distribution of MPs and the migration changes of their surface microbial community composition and ARGs in different media by 16S rRNA gene high-throughput sequencing, non-targeted metabolomics and qPCR genomics in the near-shore (I), middle area (Ⅱ) and near-lake (Ⅲ) of Zhushan Bay. The results showed that MPs in fibrous form were dominant in the aquatic environment of Zhushan Bay; Polyurethane (PU) and Silicone were the main MPs types in Zhushan Bay.

View Article and Find Full Text PDF

Deferoxamine (DFB) is a trihydroxamic acid siderophore that chelates with iron (Fe) to form iron-siderophore complexes. The existence of siderophores in nature changes the form of iron and affects the absorption and utilization of iron by organisms. However, the relationship between siderophores and the growth of Cyanobacteria is largely unknown.

View Article and Find Full Text PDF

Water soluble organic nitrogen (WSON) had great influences on the aerosol chemistry, hygroscopicity, marine primary productivity, as well as nitrogen biogeochemical cycles. Aerosol sampling was conducted over an offshore island in the East China Sea in four seasons of 2019, aiming to reveal the seasonal sources and secondary formation processes of marine WSON. The annual mean WSON concentration reached 1.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated how a magnetic lanthanum-based material (MLC-10) affects the control of cyanobacterial blooms by adding it at different growth stages over 30 days.
  • Results indicated that MLC-10 significantly reduced phosphorus levels, leading to 97.5% bloom control when applied at the early growth stage.
  • Additionally, MLC-10 caused cellular damage and stress in cyanobacteria, impacting their metabolism and reducing their floating ability, ultimately aiding in bloom control.
View Article and Find Full Text PDF

With the wide application of plastic products, microplastic pollution has become a major environmental issue of global concern. Microplastics in aquatic environments can interact with organic pollutants, causing a combined effect on submerged macrophytes. This study investigated the response mechanisms of the submerged plant Myriophyllum verticillatum and epiphytic biofilm to the antibiotic enrofloxacin, microplastics, and their combined exposure in a high nitrogen and phosphorus environment.

View Article and Find Full Text PDF

Colony formation is an essential stage of cyanobacterial blooms. High calcium concentration can promote Microcystis aeruginosa aggregation behavior, but the mechanism of colony formation caused by calcium has rarely been reported. In this study, high calcium-induced colony formation was identified as a shift from cell adhesion to cell division, rather than only cell adhesion as previously thought.

View Article and Find Full Text PDF

Phosphorus (P) could improve the stress resistance and adaptability of submerged macrophytes. This study investigated the physiological and biochemical responses of plants exposed to different P and Pb, Cd concentrations. Alterations of protein synthesis, the DNA methylation (5-mC) level, and the microbial community of biofilm were also evaluated.

View Article and Find Full Text PDF

Nano- and microplastics pose severe risks to the ecological environment. Nanoplastics (NPs) not only directly affect aquatic organisms, but also adsorb to other pollutants, resulting in compound pollution. Bisphenol F (BPF), an endocrine-disrupting chemical, is increasingly replacing bisphenol A (BPA) and is therefore widely distributed in the environment.

View Article and Find Full Text PDF

Magnetite/lanthanum hydroxide composite (MLC-10) was applied in simulate natural water, sediment and cyanobacteria (WSC) system to evaluate its effect on cyanobacterial bloom in this study. According to the results, the addition of MLC-10 showed a good performance on inhibition of cyanobacterial bloom in systems. The cyanobacteria density of WSC-0.

View Article and Find Full Text PDF

Nickel (Ni) is one of the most essential trace elements in the anaerobic digestion system. In this study, green chelating agent Ethylenediamine-N, N'-disuccinic acid (EDDS), common chelating agents with low biodegradability nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) were respectively used as ligands of Ni (II) to inspect the feasibility of enhancing methane production and reducing Ni dosage. In practice, continuous stirred-tank reactors (37 °C, 120 rpm) were operated with a mixture of pig manure and food waste as the substrate, and were supplied with extra Ni in the form of Ni (II) (0, 2.

View Article and Find Full Text PDF

To investigate the deleterious ecological effects of cyanobacteria on submerged macrophytes, this study investigated the effects of different concentrations of fresh cyanobacteria (FC) and cyanobacteria decomposition solution (CDS) on an experimental group of submerged macrophytes (Vallisneria natans (Lour.) Hara and Myriophyllum verticillatum Linn.).

View Article and Find Full Text PDF

Fractures and fracture networks are key conduits for migration of hydrothermal fluids, water and contaminants in groundwater systems Modeling is widely used to understand the environmental risk associated with migration of pollutant for different hydrogeological conditions. In this paper, we proposed a conceptual and mathematical model of flow and transport phenomena in fractured rock systems, and applied in a arsenic contaminate site as a case study. The groundwater flow model and arsenic migration model in fissure-matrix dual system were established.

View Article and Find Full Text PDF

Heavy metals can cause a significant damage to submerged macrophytes and affect its periphyton biofilms in aquatic environments. This study investigated the effects of heavy metals such as copper (Cu), lead (Pb), cadmium (Cd) and their mixture on physiological and biochemical responses and ultrastructure characteristics of Vallisneria natans (V. natans).

View Article and Find Full Text PDF

Two magnetic adsorbents, magnetite/aluminum hydroxide composite (MAC) and magnetite/lanthanum hydroxide composite (MLC), were successfully synthesized by a simple one-pot method and their phosphate adsorption process was investigated. The properties of synthesized adsorbents were studied using Fourier transform infrared spectroscopy (FTIR), zeta potential, vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). The adsorption isotherms, adsorption kinetics and the effects of solution pH and dissolved organic carbon (DOC) on the adsorption of phosphate in aqueous solution by MAC, MLC-2, MLC-10 and LMB were investigated to evaluate the difference in phosphate removal efficiency of the magnetic adsorbents and non-magnetic adsorbent.

View Article and Find Full Text PDF

In this research, a novel packed anoxic/oxic moving bed biofilm reactor (MBBR) was established to achieve high-organic matter removal rates, despite the carbon/nitrogen (C/N) ratio of 2.7-5.1 in the influent.

View Article and Find Full Text PDF

Eastern China is a typical region that suffers from harmful cyanobacterial blooms. Numerous studies have focused on bloom formation mechanisms; however, the detailed mechanisms remained unclear. Our study explored the influence of four metal ions (Ca, Cu, Pb and Cd) on Microcystis aeruginosa to determine their effects on bloom formation.

View Article and Find Full Text PDF

Microcystis aeruginosa (M. aeruginosa), as the dominant algae in eutrophic water bodies, has caused a serious harm to the local eco-environment. A biological tool, employing allelopathic inhibitory of eucalyptus to control M.

View Article and Find Full Text PDF

Lakes represent an important source of drinking water resource for human beings. The presence of harmful algae blooms can pose a serious threat to lakes water quality. This study explored the feasibility of using eucalyptus plants and leaves extracts for controlling algae proliferation in an aquatic milieu.

View Article and Find Full Text PDF

The purpose of this study is to recognize the contamination characteristics of trace metals in soils and apportion their potential sources in Northern China to provide a scientific basis for basic of soil environment management and pollution control. The data set of metals for 12 elements in surface soil samples was collected. The enrichment factor and geoaccumulation index were used to identify the general geochemical characteristics of trace metals in soils.

View Article and Find Full Text PDF