Publications by authors named "XingRong Yan"

Forest musk deer (Moschus berezovskii) is one of the most endangered medicinally important wild animals in the world. Forest musk deer farming is the main way of production of musk. However, the single provenance and lack of genetic information lead to reduced genetic diversity of forest musk deer.

View Article and Find Full Text PDF

Worldwide, termites are one of few social insects. In this research, the stages of embryonic development in the parthenogenetic and sexual eggs of and were observed and described. In , the egg development of the FF and FM groups happened during the early phases of development, whereas in , this appeared mainly during the late phase of development.

View Article and Find Full Text PDF
Article Synopsis
  • Yellowhorn is a hardy deciduous tree native to Northern and Central China, valued for its ornamental use and edible seeds rich in oil and fatty acids.
  • A high-quality genome assembly of yellowhorn revealed significant gene expansions related to photosynthesis and root development, which may enhance the tree's adaptability to harsh environments.
  • The research identified a gene associated with seed oil content variation, aiding in understanding yellowhorn's genetic improvement for oil production.
View Article and Find Full Text PDF

The forest musk deer (Moschus berezovskii) is an endangered animal that produces musk that is utilized for medical applications worldwide, and this species primarily lives in China. Animal-derived musk can be employed as an important ingredient in Chinese medicine. To investigate the properties of bone marrow mesenchymal stem cells (MSCs) obtained from the bone marrow of forest deer for future application, MSCs were isolated and cultivated in vitro.

View Article and Find Full Text PDF

Background: Golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered primate species, whose molecular material for conservation purposes has not yet been maintained. Although small-molecule compounds (SMCs) have been reported to improve induced pluripotent stem cells (iPSCs), their efficiency in the interspecies-transferred nucleus is still unknown.

Methods: We thus used the fibroblasts from the golden snub-nosed monkey treated with SMC as donor cells, injected into the enucleated oocytes of goats, to test such efficiency.

View Article and Find Full Text PDF

Yellow horn (Xanthoceras sorbifolia) is an oil-rich woody plant cultivated for bio-energy production in China. Soil saline-alkalization is a prominent agricultural-related environmental problem limiting plant growth and productivity. In this study, we performed comparative physiological and transcriptomic analyses to examine the mechanisms of X.

View Article and Find Full Text PDF

Golden snub-nosed monkeys are endangered animals in China, and their cells have been demonstrated to be important as genetic resources and in applications for advancing biological research. Moreover, in primary research, basic fibroblast growth factor (bFGF) is used to promote the proliferation of fibroblasts to create abundant cells for cryopreservation. To further investigate the effect of bFGF on the efficiency of preservation of fibroblasts obtained from an endangered species, a fibroblast cell line was isolated from a dead golden snub-nosed monkey.

View Article and Find Full Text PDF

A biodegradable adsorbent, modified konjac glucomannan (MKGM), was prepared by konjac glucomannan (KGM) acylated with phthalic anhydride catalyzed using concentrated sulfuric acid. The modified conditions such as reaction temperature, mass ratio of phthalic anhydride to KGM, catalyst dosage and reaction time were investigated, respectively. MKGM exhibited preferable adsorption performance for the removal of Fe (Ⅲ) ion.

View Article and Find Full Text PDF

Alzheimer's disease is a common neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. Aerial parts of Willd (APT) is a traditional Chinese medicine used for the treatment of amnesia. The present study aimed to investigate the protective effects of APT on scopolamine-induced learning and memory impairments in mice.

View Article and Find Full Text PDF

Xanthoceras sorbifolia, a medicinal and oil-rich woody plant, has great potential for biodiesel production. However, little study explores the link between gene expression level and metabolite accumulation of X. sorbifolia in response to cold stress.

View Article and Find Full Text PDF

Global human health has been compromised by high-fat diets. This study aimed to investigate the relationship between a high-fat diet and parthenogenetic embryo quality. Mice fed a high-fat or a normal diet was used as treated or control groups, respectively.

View Article and Find Full Text PDF

The understanding of adipose tissue development is crucial for the treatment of obesity-related diseases. Adipogenesis has been extensively investigated at the gene and protein levels in recent years. However, the alterations in protein glycosylation during this process remains unknown, particularly that of parthenogenetic embryonic stem cells (pESCs), a type of ESCs with low immunogenicity and no ethical concerns regarding their use.

View Article and Find Full Text PDF

Alcohol is an important compound used in food, agriculture, and medicine. In this study, we investigated the effect of alcohol on oocyte quality in mice by exposing animals for different duration times during an estrous cycle. Cumulus-oocyte complexes were collected from mice after pregnant mare serum gonadotropin- and human chorionic gonadotropin-induced superovulation.

View Article and Find Full Text PDF

Uniparental parthenogenesis yields pluripotent stem cells without the political and ethical concerns surrounding the use of embryonic stem cells (ESCs) for biomedical applications. In the current study, we hypothesized that parthenogenetic stem cells (pSCs) could be directed to differentiate into tenocytes and applied for tissue-engineered tendon. We showed that pSCs displayed fundamental properties similar to those of ESCs, including pluripotency, clonogenicity, and self-renewal capacity.

View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) is frequently used to produce transgenic cloned livestock, but it is still associated with low success rates. To our knowledge, we are the first to report successful production of transgenic cattle that overexpress bovine adipocyte-type fatty acid binding proteins (A-FABPs) with the aid of SCNT. Intragenomic integration of additional A-FABP gene copies has been found to be positively correlated with the intramuscular fat content in different farm livestock species.

View Article and Find Full Text PDF

Background: Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo.

View Article and Find Full Text PDF

Tissue-engineered skin (TES) holds great promise for wound healing in the clinic. However, optimized preservation methods remain an obstacle for its wide application. In this experimental work, we developed a novel approach to preserve TES in the desiccated state with trehalose.

View Article and Find Full Text PDF

The selection of appropriate seed cells is crucial for adipose tissue engineering. Here, we reported the stepwise induction of parthenogenetic embryonic stem cells (pESCs) to differentiate into adipogenic cells and its application in engineering injectable adipose tissue with Pluronic F-127. pESCs had pluripotent differentiation capacity and could form teratomas that include the three primary germ layers.

View Article and Find Full Text PDF

The capacity to induce a rapid and controlled healing of bone defects is critical for a bone substitute. Previous studies have reported hydrothermal transformation (HT) of aragonite from cuttlebone (CB) to cuttlebone hydroxyapatite (CBHA). However, the biocompatibility and in vivo characteristic of CBHA have not been fully investigated.

View Article and Find Full Text PDF

Substantial evidence suggests that inflammation is an important contributor to many neurodegenerative disorders. Activated microglial cells play an important role in releasing pro-inflammatory factors, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) for inducing inflammation. Recently, some reports have suggested that glycoprotein nonmetastatic melanoma B (GPNMB) is highly expressed in microglia after LPS treatment.

View Article and Find Full Text PDF

Chinese Kunming mice (Mus musculus Km), widely used as laboratory animals throughout China, remain very refractory for embryonic stem (ES) cell isolation. The present study was aimed to evaluate the effects of hybridization with 129/Sv mice, and culture media containing fetal bovine serum (FBS) or Knockout serum replacement (KSR) on ES cell isolation from Kunming mice. The results demonstrated that ES cells had been effectively isolated from the hybrid embryos of Kunming and 129/Sv mice using all three media containing 15% FBS, 15% KSR and their mixture of 14% KSR and 1% FBS, individually.

View Article and Find Full Text PDF

CD306, also known as soluble leukocyte-associated immunoglobulin-like receptor-2 (LAIR-2), is a member of an immunoglobulin superfamily with the shared characteristic of an immunoglobulin-like C2-type domain. CD306 is speculated to be secretory and has 84% similarity with the extracellular domain of CD305, which binds to the same ligands as CD306. However, data on its distribution are absent due to the lack of an efficient method to detect it.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a frequent occurrence in cerebrovascular accidents, and inflammation occurs in the subarachnoid space after SAH. Arachnoid cells have the capability to present antigens and active T-lymphocytes after stimulation by cerebrospinal fluid (CSF). However, the effect of CSF on T-lymphocytes and arachnoid cell adhesion was not clearly understood.

View Article and Find Full Text PDF

Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis.

View Article and Find Full Text PDF

The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles.

View Article and Find Full Text PDF