Publications by authors named "XingLong Han"

Dilated cardiomyopathy (DCM) is one of the main causes of sudden cardiac death and heart failure and is the leading indication for cardiac transplantation worldwide. Mutations in dozens of cardiac genes have been connected to the development of DCM including the Troponin T2 gene (TNNT2). Here, we generated a human induced pluripotent stem cells (hiPSCs) from a DCM patient with a familial history that carries a missense mutation in TNNT2.

View Article and Find Full Text PDF

During spaceflight, the cardiovascular system undergoes remarkable adaptation to microgravity and faces the risk of cardiac remodeling. Therefore, the effects and mechanisms of microgravity on cardiac morphology, physiology, metabolism, and cellular biology need to be further investigated. Since China started constructing the China Space Station (CSS) in 2021, we have taken advantage of the Shenzhou-13 capsule to send human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to the Tianhe core module of the CSS.

View Article and Find Full Text PDF

Mitochondrial diseases are a heterogeneous group of inherited disorders characterized by mitochondrial dysfunction, and these diseases are often severe or even fatal. Mitochondrial diseases are often caused by mitochondrial DNA mutations. Currently, there is no curative treatment for patients with pathogenic mitochondrial DNA mutations.

View Article and Find Full Text PDF

Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) represent a promising source of human ECs urgently needed for the study of cardiovascular disease mechanisms, cell therapy, and drug screening. This study aims to explore the function and regulatory mechanism of the miR-148/152 family consisting of miR-148a, miR-148b, and miR-152 in hPSC-ECs, so as to provide new targets for improving EC function during the above applications. In comparison with the wild-type (WT) group, miR-148/152 family knockout (TKO) significantly reduced the endothelial differentiation efficiency of human embryonic stem cells (hESCs), and impaired the proliferation, migration, and capillary-like tube formatting abilities of their derived ECs (hESC-ECs).

View Article and Find Full Text PDF

Background: Endothelial cells are located in the inner lumen of blood and lymphatic vessels and exhibit the capacity to form new vessel branches from existing vessels through a process called angiogenesis. This process is energy intensive and tightly regulated. Glycolysis is the main energy source for angiogenesis.

View Article and Find Full Text PDF

In the past decades, human induced pluripotent stem cells (iPSCs) have been generated by the ectopic expression of "Yamanaka factors" in multiple somatic cells. However, the procedure to get access to donor cells is hard or invasive in most cases. Hereon, we depict a stepwise method developed in our laboratory for the generation of iPSCs from renal epithelial cells present in urine, which is noninvasive, nonintegrating, and universal.

View Article and Find Full Text PDF

Herein, we report that the phosphorous-doped 1 T-MoS as co-catalyst decorated nitrogen-doped g-CN nanosheets (P-1 T-MoS@N-g-CN) are prepared by the hydrothermal and annealing process. The obtained P-1 T-MoS@N-g-CN composite presents an enhanced photocatalytic N reduction rate of 689.76 μmol L gh in deionized water without sacrificial agent under simulated sunlight irradiation, which is higher than that of pure g-CN (265.

View Article and Find Full Text PDF

Generative adversarial networks are being extensively studied for low-dose computed tomography denoising. However, due to the similar distribution of noise, artifacts, and high-frequency components of useful tissue images, it is difficult for existing generative adversarial network-based denoising networks to effectively separate the artifacts and noise in the low-dose computed tomography images. In addition, aggressive denoising may damage the edge and structural information of the computed tomography image and make the denoised image too smooth.

View Article and Find Full Text PDF

Cardiovascular safety assessment is vital for drug development, yet human cardiovascular cell models are lacking. In vitro mass-generated human pluripotent stem cell (hPSC)-derived cardiovascular cells are a suitable cell model for preclinical cardiovascular safety evaluations. In this study, we established a preclinical toxicology model using same-origin hPSC-differentiated cardiomyocytes (hPSC-CMs) and endothelial cells (hPSC-ECs).

View Article and Find Full Text PDF

Ephrin B2 (EFNB2) is the first identified and most widely used marker for arterial endothelial cells (AECs). We generated a heterozygous EFNB2-2A-mCherry reporter H1 cell line, H1-EFNB2-2A-mCherry (WAe001-A-57), by CRISPR/Cas9-mediated insertion of 2A-mCherry cassette into the EFNB2 gene locus, immediately before the translation stop codon. The H1-EFNB2-2A-mCherry reporter cells were pluripotent and could differentiate into all three germ layer lineages.

View Article and Find Full Text PDF

Myocardial infarction (MI) results in cardiomyocyte death and ultimately leads to heart failure. Pyroptosis is a type of the inflammatory programmed cell death that has been found in various diseased tissues. However, the role of pyroptosis in MI heart remains unknown.

View Article and Find Full Text PDF

Cardiomyocytes differentiated from human embryonic stem cells (hESCs) represent a promising cell source for heart repair, disease modeling and drug testing. However, improving the differentiation efficiency and maturation of hESC-derived cardiomyocytes (hESC-CMs) is still a major concern. Retinoic acid (RA) signaling plays multiple roles in heart development.

View Article and Find Full Text PDF

: As a hallmark of various heart diseases, cardiac fibrosis ultimately leads to end-stage heart failure. Anti-fibrosis is a potential therapeutic strategy for heart failure. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of heart diseases that promise to serve as therapeutic targets.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), as a class of naturally occurring RNAs, play important roles in cardiac physiology and pathology. There are many miRNAs that show multifarious expression patterns during cardiomyocyte genesis. Here, we focused on the MIR148A family, which is composed of MIR148A, MIR148B and MIR152, and shares the same seed sequences.

View Article and Find Full Text PDF

Background: Ischemic heart diseases are still a threat to human health. Human pluripotent stem cell-based transplantation exhibits great promise in cardiovascular disease therapy, including heart ischemia. The purpose of this study was to compare the efficacy of human embryonic stem cell-derived cardiomyocyte (ESC-CM) therapy in two heart ischemia models, namely, permanent ischemia (PI) and myocardial ischemia reperfusion (IR).

View Article and Find Full Text PDF

Cells encapsulation by biomaterials has been widely studied as a strategy of building tissue construct in tissue engineering. Conventional encapsulation of cells using hydrogels often needs the polymerization process or relatively complex molding process. In this study, we developed a facile strategy for the in situ fabrication of biodegradable cell-laden starch foams.

View Article and Find Full Text PDF

Rationale: Aging is one of the most significant risk factors for cardiovascular diseases, and the incidence of myocardial ischemia increases dramatically with age. Some studies have reported that cardiosphere-derived cells (CDCs) could benefit the injured heart. Nevertheless, the convincing evidence on CDC-induced improvement of aging heart is still limited.

View Article and Find Full Text PDF

Myocardial infarction (MI), with a major process of cardiomyocyte death, remains a leading cause of morbidity and mortality worldwide. To date, it has been shown that lncRNAs play important roles in cardiovascular pathology. However, the detailed studies on lncRNAs regulating cardiomyocyte death in myocardial infarction are still limited.

View Article and Find Full Text PDF

Bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive cytokine that plays a critical role in bone regeneration and repair. However, its distribution and side effects are major barriers to its success as therapeutic treatment. The improvement of therapy using collagen delivery matrices has been reported.

View Article and Find Full Text PDF

Nerve conduit is one of strategies for spine cord injury (SCI) treatment. Recently, studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site. However, the scaffold by itself was difficult to meet the need of SCI functional recovery.

View Article and Find Full Text PDF