Publications by authors named "Xing-yuan Liu"

Article Synopsis
  • A strong genetic basis for congenital heart disease (CHD) was highlighted, focusing on BMP4, a gene crucial for heart development; mutations in BMP4 could cause multiple cardiovascular issues and embryonic demise in studies.
  • Researchers sequenced the BMP4 gene in 212 CHD patients and 236 non-CHD individuals, aiming to identify novel mutations and assess their functional consequences.
  • A new mutation, NM_001202.6:c.318T>G;p.(Tyr106*), was discovered in a female with familial CHD, which was linked to CHD in her relatives, and it negatively impacted the expression of key genes affected in CHD cases, suggesting BMP4's role in genetic predisposition to
View Article and Find Full Text PDF

In this work, a three-dimensional bimetallic metal-organic framework (BMOF), BUC-101 (Co/Mn-Hchhc, Hchhc = -1,2,3,4,5,6-cyclohexane-hexacarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture) was synthesized by a one-pot solvothermal method and characterized in detail by single crystal X-ray diffraction (SCXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) element mapping analysis. BUC-101 showed excellent catalytic peroxymonosulfate (PMS) activation performance to degrade rhodamine B (RhB) without energy input. In addition, BUC-101 can maintain good stability and recyclability during the PMS activation processes, in which 99.

View Article and Find Full Text PDF

Objective: Aggregating evidence convincingly establishes the predominant genetic basis underlying congenital heart defects (CHD), though the heritable determinants contributing to CHD in the majority of cases remain elusive. In the current investigation, was selected as a prime candidate gene for human CHD mainly due to cardiovascular developmental abnormalities in -knockout animals. The objective of this retrospective study was to identify a new mutation responsible for CHD and characterize the functional effect of the identified CHD-causing mutation.

View Article and Find Full Text PDF

Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline mutations are causally linked to TOF. However, the effects of somatic mutations on the pathogenesis of TOF remain to be ascertained.

View Article and Find Full Text PDF

The existing evidence on the environmental effects of vehicular emissions regulation almost comes from developed countries, but the effectiveness of this policy tool in developing countries, especially in China, remains unclear. This study, for the first time, examined the mitigating effects of China's vehicular emissions regulation on air pollution at the prefecture level cities, by using the latest implementation of China's National Vehicular Emissions Standard VI (CHINA-VI) as a quasi-natural experimental process of policy shocks. To this end, monthly data from 2018 to 2020 was applied to construct a difference-in-differences (DID) model.

View Article and Find Full Text PDF

As the most prevalent type of birth malformation, congenital heart disease (CHD) gives rise to substantial mortality and morbidity as well as a socioeconomic burden. Although aggregating investigations highlight the genetic basis for CHD, the genetic determinants underpinning CHD remain largely obscure. In this research, a Chinese family suffering from autosomal dominant CHD (atrial septal defect) and arrhythmias was enrolled.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied a Chinese family with CHD and identified a new mutation in the SOX18 gene that appears to be linked to the condition.
  • Functional tests showed that the mutant SOX18 loses its ability to activate genes crucial for heart development, highlighting its potential role as a new contributor to CHD and improving genetic diagnosis and prevention strategies.
View Article and Find Full Text PDF

Objective: This study was designed to evaluate echocardiographic measurements in Han Chinese preterm and term infants and to build percentile curves of normal echocardiographic measurements values related to the weight.

Method: From December 2014 to December 2021, a total of 797 male infants and 773 female infants born in * were included in the study. The echocardiographic measurements of each subject were as follows: left ventricular internal diameter at end-diastole (LVIDd), left ventricular internal diameter at end-systole (LVIDs), left ventricular posterior wall thickness at end-diastole (LVPWd), left ventricular posterior wall thickness at end-systole (LVPWs), interventricular septal thickness at end-diastole (IVSd), interventricular septal thickness at end-systole (IVSs), ascending aorta diameter (AO), left atrium (LA) dimension, left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS) and left ventricular mass (LVM).

View Article and Find Full Text PDF

Background: The high risks for childhood respiratory diseases are associated with exposure to ambient air pollution. However, there are few studies that have explored the association between air pollution exposure and respiratory diseases among young children (particularly aged 0-2 years) based on the entire population in a megalopolis.

Methods: Daily hospital admission records were obtained from 54 municipal hospitals in Wuhan city, China.

View Article and Find Full Text PDF

As the most common form of developmental malformation affecting the heart and endothoracic great vessels, congenital heart disease (CHD) confers substantial morbidity and mortality as well as socioeconomic burden on humans globally. Aggregating convincing evidence highlights the genetic origin of CHD, and damaging variations in over 100 genes have been implicated with CHD. Nevertheless, the genetic basis underpinning CHD remains largely elusive.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) refers to a rare, progressive disorder that is characterized by occlusive pulmonary vascular remodeling, resulting in increased pulmonary arterial pressure, right-sided heart failure, and eventual death. Emerging evidence from genetic investigations of pediatric-onset PAH highlights the strong genetic basis underpinning PAH, and deleterious variants in multiple genes have been found to cause PAH. Nevertheless, PAH is of substantial genetic heterogeneity, and the genetic defects underlying PAH in the overwhelming majority of cases remain elusive.

View Article and Find Full Text PDF

Occurring in about 1% of all live births, congenital heart defects (CHDs) represent the most frequent type of developmental abnormality and account for remarkably increased infant morbidity and mortality. Aggregating studies demonstrate that genetic components have a key role in the occurrence of CHDs. Nevertheless, due to pronounced genetic heterogeneity, the genetic causes of CHDs remain unclear in most patients.

View Article and Find Full Text PDF

Yinchenhao Tang (YCHT), a classic traditional Chinese medicine (TCM) formulae, plays an important role in the treatment of Yang Huang syndrome (YHS). With the emergence of new biomarkers of YHS uncovered metabonomics, the underlying functional mechanisms are still not clear. Functional metabolomics aims at converting biomarkers derived from metabonomics into disease mechanisms.

View Article and Find Full Text PDF

Congenital bicuspid aortic valve (BAV), the most common form of birth defect in humans, is associated with substantial morbidity and mortality. Increasing evidence demonstrates that genetic risk factors play a key role in the pathogenesis of BAV. However, BAV is a genetically heterogeneous disease and the genetic determinants underpinning BAV in an overwhelming majority of patients remain unknown.

View Article and Find Full Text PDF

Yin-Chen-Hao-Tang (YCHT), the classic formulae of traditional Chinese medicine (TCM), is widely used to treat dampness-heat jaundice syndrome (DHJS) and various liver diseases. However, the therapeutic mechanism of YCHT is yet to have an integrated biological interpretation. In this work, we used metabolomics technology to reveal the adjustment of small molecule metabolites in body during the treatment of YCHT.

View Article and Find Full Text PDF

Congenital heart defect (CHD) represents the most prevalent birth defect, and accounts for substantial morbidity and mortality in humans. Aggregating evidence demonstrates the genetic basis for CHD. However, CHD is a heterogeneous disease, and the genetic determinants underlying CHD in most patients remain unknown.

View Article and Find Full Text PDF

Yin-Chen-Hao-Tang (YCHT), a classic Chinese herbal formula, is characterized by its strong therapeutic effects of liver regulation and relief of jaundice, especially Yanghuang syndrome (YHS). YHS is a type of jaundice with damp-heat pathogenesis, and it is considered a complicated Chinese medicine syndrome (CMS). The accurate mechanism for healing YHS has not yet been completely reported.

View Article and Find Full Text PDF

Aggregating evidence suggests that genetic determinants play a pivotal role in the pathogenesis of the congenitally bicuspid aortic valve (BAV). BAV is of pronounced genetic heterogeneity, and the genetic components underlying BAV in an overwhelming majority of patients remain elusive. In the current study, the whole coding exons and adjacent introns, as well as 5' and 3' untranslated regions of the GATA4 gene, which codes for a zinc-finger transcription factor crucial for the normal development of the aortic valve, were screened by direct sequencing in 150 index patients with congenital BAV.

View Article and Find Full Text PDF

Conotruncal defects (CTDs) account for ~30% of all types of congenital heart disease and contribute to increased morbidity and mortality rates. Increasing evidence suggests that genetic risk factors are involved in the pathogenesis of CTDs. Mutations in a number of genes, including the gene that codes for a T-box transcription factor essential for normal cardiovascular development, may contribute to the development of CTD.

View Article and Find Full Text PDF

Congenital heart defect (CHD) is the most common type of birth defect in humans and a leading cause of infant morbidity and mortality. Previous studies have demonstrated that genetic defects play a pivotal role in the pathogenesis of CHD. However, the genetic basis of CHD remains poorly understood due to substantial genetic heterogeneity.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common type of developmental abnormality in humans, and is a leading cause for substantially increased morbidity and mortality in affected individuals. Increasing studies demonstrates a pivotal role of genetic defects in the pathogenesis of CHD, and presently mutations in more than 60 genes have been associated with CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic basis underpinning CHD in a large proportion of patients remains unclear.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common form of birth defect in humans, and remains a leading non‑infectious cause of infant mortality worldwide. An increasing number of studies have demonstrated that genetic defects serve a pivotal role in the pathogenesis of CHD, and mutations in >60 genes have been causally associated with CHD. CHD is a heterogeneous disease and the genetic basis of CHD in the majority of patients remains poorly understood.

View Article and Find Full Text PDF

Congenital heart defects (CHDs), a wide variety of developmental abnormalities in the structures of the heart and the great thoracic blood vessels, are the most common form of birth defect in humans worldwide. CHDs are accountable for substantial morbidity and are still the leading cause of birth defect‑related deaths. Recent studies have demonstrated the pivotal roles of genetic defects in the pathogenesis of CHDs, and a great number of genetic mutations have been associated with CHDs.

View Article and Find Full Text PDF

Atrial fibrillation (AF), the most common type of cardiac rhythm disturbance encountered in clinical practice, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that abnormal cardiovascular development is involved in the pathogenesis of AF. A recent study has revealed that the TBX5 gene, which encodes a T-box transcription factor key to cardiovascular development, was associated with AF and atypical Holt-Oram syndrome.

View Article and Find Full Text PDF

Congenital heart disease (CHD), the most common type of developmental abnormality, is associated with substantial morbidity and mortality in humans worldwide. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed 2 (HAND2), has been demonstrated to be crucial for normal cardiovascular development in animal models. However, whether a genetically defective HAND2 contributes to congenital heart disease (CHD) in humans remains to be explored.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: