Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience.
View Article and Find Full Text PDFCoupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
June 2002
With pulsed optical-optical double resonance (OODR) fluorescence excitation spectroscopy Rydberg states of 7Li2 in the energy region of 35,500-38,000 cm-1 were studied and 146 transitions into the 3(1) pi g state of 7Li2 were measured. They were assigned to 10 vibrational levels of the 3(1) pi g state. A new set of Dunham constants, RKR potential curve, and Franck-Condon factors for the transitions form the A 1 sigma u+ state are derived.
View Article and Find Full Text PDF