Publications by authors named "Xing-Zheng Fu"

Autophagy is a highly conserved intracellular degradation pathway that breaks down damaged macromolecules and/or organelles. It is involved in plant development and senescence, as well as in biotic and abiotic stresses. However, the autophagy process and related genes are largely unknown in citrus.

View Article and Find Full Text PDF

Background: Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown.

View Article and Find Full Text PDF

Background: Copper (Cu) toxicity has become a potential threat for citrus production, but little is known about related mechanisms. This study aims to uncover the global landscape of mRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) in response to Cu toxicity so as to construct a regulatory network of competing endogenous RNAs (ceRNAs) and to provide valuable knowledge pertinent to Cu response in citrus.

Results: Tolerance of four commonly used rootstocks to Cu toxicity was evaluated, and 'Ziyang Xiangcheng' (Citrus junos) was found to be the most tolerant genotype.

View Article and Find Full Text PDF

Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange, which we have named as CitMTP1 and CitMTP3 to CitMTP12 based on their sequence similarity to Arabidopsis thaliana MTPs.

View Article and Find Full Text PDF

Zinc (Zn) and iron (Fe) deficiency are widespread among citrus plants, but the molecular mechanisms regarding uptake and transport of these two essential metal ions in citrus are still unclear. In the present study, 12 members of the Zn/Fe-regulated transporter (ZRT/IRT)-related protein () gene family were identified and isolated from a widely used citrus rootstock, trifoliate orange ( L. Raf.

View Article and Find Full Text PDF

Spermine (Spm) is thought to play an important role in drought or high-temperature (HT) tolerance. However, it is not clear whether Spm confers similar resistance in the presence of both drought and HT, which often occur simultaneously. In the present study, the trifoliate orange ( (L.

View Article and Find Full Text PDF

Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase.

View Article and Find Full Text PDF

Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating biotic stresses affecting the citrus industry. Meiwa kumquat (Fortunella crassifolia) is canker-resistant, while Newhall navel orange (Citrus sinensis Osbeck) is canker-sensitive.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) cascade plays pivotal roles in diverse signalling pathways related to plant development and stress responses. In this study, the cloning and functional characterization of a group-I MAPK gene, PtrMAPK, in Poncirus trifoliata (L.) Raf are reported.

View Article and Find Full Text PDF

Background: Enormous work has shown that polyamines are involved in a variety of physiological processes, but information is scarce on the potential of modifying disease response through genetic transformation of a polyamine biosynthetic gene.

Results: In the present work, an apple spermidine synthase gene (MdSPDS1) was introduced into sweet orange (Citrus sinensis Osbeck 'Anliucheng') via Agrobacterium-mediated transformation of embryogenic calluses. Two transgenic lines (TG4 and TG9) varied in the transgene expression and cellular endogenous polyamine contents.

View Article and Find Full Text PDF

Arginine decarboxylase (ADC) is an important enzyme responsible for polyamine synthesis under stress conditions. In this study, the gene encoding ADC in Poncirus trifoliata (PtADC) was isolated and it existed as a single-copy member. Transcript levels of PtADC were up-regulated by low temperature and dehydration.

View Article and Find Full Text PDF

Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving dehydration tolerance of citrus in vitro plants by exogenous application of spermine (Spm). 'Red Tangerine' (Citrus reticulata Blanco) in vitro plants pretreated with 1 mM Spm exhibited less wilted phenotype and lower water loss and electrolyte leakage than the control under dehydration.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvi0qep0sockc86080acimmmhlg48kmqq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once