Macrophages are the most plastic cells in the hematopoietic system and they exhibit great functional diversity. They have been extensively applied in anti-inflammatory, anti-fibrotic and anti-cancer therapies. However, the application of macrophages is limited by the efficiency of their engineering.
View Article and Find Full Text PDFA dendritic cell (DC) networking system has become an attractive approach in cancer immunotherapy. Successful DC gene engineering depends on the development of transgene vectors. A cationic polymer, chitosan-linked polyethylenimine (PEI) (CP), possessing the advantages of both PEI and chitosan, has been applied in nonviral transfection of DCs.
View Article and Find Full Text PDFPurpose: Successful genetically engineered Dendritic Cell (DC) can enhance DC's antigen presentation and lymph node migration. The present study aims to genetically engineer a DC using an efficient non-viral gene delivery vector to induce a highly efficient antigen presentation and lymph node targeting in vivo.
Methods: Spermine-dextran (SD), a cationic polysaccharide vector, was used to prepare a gene delivery system for DC engineering.
We have previously developed a novel adenovirus vector (Adv) that targeted tumor tissues/vasculatures after systemic administration. The surface of this Adv is conjugated with CGKRK tumor homing peptide by the cross-linking reaction of polyethyleneglycol (PEG). In this study, we showed that the condition of PEG modification was important to minimize the gene expression in normal tissues after systemic treatment.
View Article and Find Full Text PDFDendritic cells (DCs) are the most potent antigen-presenting cells. They play a vital role in the initiation of immune response by presenting antigens to T cells and followed by induction of T-cell response. Reported research in animal studies indicated that vaccine immunity could be a promising alternative therapy for cancer patients.
View Article and Find Full Text PDF