At the macroscopic scale, the friction force (f) is found to increase with the normal load (N), according to the classic law of Da Vinci-Amontons, namely, f = µN, with a positive definite friction coefficient (μ). Here, first-principles calculations are employed to predict that, the static force f, measured by the corrugation in the sliding potential energy barrier, is lowered upon increasing the normal load applied on one layer of the recently discovered ferroelectric In Se over another commensurate layer of In Se . That is, a negative differential friction coefficient μ can be realized, which thus simultaneously breaking the classic Da Vinci-Amontons law.
View Article and Find Full Text PDFSearching for half-metals in low dimensional materials is not only of scientific importance, but also has important implications for the realization of spintronic devices on a small scale. In this work, we show theoretically that simple bending can induce spin-splitting in bilayer silicene. For bilayer silicene with Bernal stacking, the monolayer has a long range ferromagnetic spin order and between the two monolayers, the spin orders are opposite, giving rise to an antiferromagnetic configuration for the ground state of the bilayer silicene.
View Article and Find Full Text PDFRealization of half-metallicity (HM) in low dimensional materials is a fundamental challenge for nano spintronics and a critical component for developing alternative generations of information technology. Using first-principles calculations, we reveal an unconventional deformation potential for zigzag nanoribbons (NRs) of 2D-Xenes. Both the conduction band minimum (CBM) and valence band maximum (VBM) of the edge states have negative deformation potentials.
View Article and Find Full Text PDFPhys Rev Lett
February 2020
The existence of Bloch flat bands of electrons provides a facile pathway to obtain exotic quantum phases owing to strong correlation. Despite the established magic angle mechanism for twisted bilayer graphene, understanding of the emergence of flat bands in twisted bilayers of two-dimensional polar crystals remains elusive. Here, we show that due to the polarity between constituent elements in the monolayer, the formation of complete flat bands in twisted bilayers is triggered as long as the twist angle is less than a certain critical value.
View Article and Find Full Text PDFThe distribution of dopants significantly influences the properties of semiconductors, yet effective modulation and separation of -type and -type dopants in homogeneous materials remain challenging, especially for nanostructures. Employing a bond orbital model with supportive atomistic simulations, we show that axial twisting can substantially modulate the radial distribution of dopants in Si nanowires (NWs) such that dopants of smaller sizes than the host atom prefer atomic sites near the NW core, while dopants of larger sizes are prone to staying adjacent to the NW surface. We attribute such distinct behaviors to the twist-induced inhomogeneous shear strain in NW.
View Article and Find Full Text PDF