Publications by authors named "Xing-Hua Qin"

Atrial fibrillation (AF) is a cardiovascular epidemic that occurs primarily in the elderly with primary cardiovascular diseases, leading to severe consequences such as stroke and heart failure. The heart is an energy-consuming organ, which requires a high degree of metabolic flexibility to ensure a quick switch of metabolic substrates to meet its energy needs in response to physiological and pathological stimulation. Metabolism is closely related to the occurrence of AF, and AF patients manifest metabolic inflexibility, such as insulin resistance and the metabolic shift from aerobic metabolism to anaerobic glycolysis.

View Article and Find Full Text PDF

This study aims to explore the active components and molecular mechanism of Shenmai Injection in the treatment of atrial fibrillation(AF) based on the application of network pharmacology and molecular docking technology. The chemical components of single herbs of Shenmai Injection were collected from TCMSP and TCMID, with the standard chemical name and PubChem CID(referred to as CID) obtained from PubChem database. The active components were screened using SwissADME, and their targets were predicted using SwissTargetPrediction.

View Article and Find Full Text PDF

More and more evidence suggests that microRNA is widely involved in the regulation of cardiovascular function. Our preliminary experiment showed that miR-494-3p was increased in heart of diabetic rats, and miR-494-3p was reported to be related to metabolism such as obesity and exercise. Therefore, this study was aimed to explore the role of miR-494-3p in diabetic myocardial insulin sensitivity and the related mechanism.

View Article and Find Full Text PDF

The involvement of cytoskeleton-related proteins in regulating mitochondrial respiration has been revealed in mammalian cells. However, it is unclear if there is a relationship between the microtubule-based motor protein kinesin and mitochondrial respiration. In this research, we demonstrate that a plant-specific kinesin, Kinesin-like protein 1 (KP1; At KIN14 h), is involved in respiratory regulation during seed germination at a low temperature.

View Article and Find Full Text PDF

A 43-bp distal element, the AtKP1-related element (KPRE), was previously shown to repress the promoter activity of the kinesin gene AtKP1 in Arabidopsis thaliana. In order to identify KPRE-binding factor 1 (KBF1), a combination of ion-exchange chromatography, gel-filtration chromatography and DNA-affinity chromatography was used to purify KBF1 from whole cell extracts of Arabidopsis seedlings. Mass spectrometric identification showed that KBF1 contains two members of the whirly family of transcription factors, AtWHY1 and AtWHY3.

View Article and Find Full Text PDF