Prenatal ethanol exposure causes cellular stress, insulin resistance, and glucose intolerance in adult offspring, with increased gluconeogenesis and reduced muscle glucose transporter-4 (glut4) expression. Impaired insulin activation of Akt and nuclear translocation of histone deacetylases (HDACs) in the liver partly explain increased gluconeogenesis. The mechanism for the reduced glut4 is unknown.
View Article and Find Full Text PDFWe have reported a reduction of insulin secretion and glucose intolerance in young mice overexpressing human IGFBP-3 (phosphoglycerate kinase [PGK]BP3) or its mutant Gly56/Gly80/Gly81-IGFBP-3 (PGKmutBP3) under the PGK promoter. Here, we investigated changes in glucose and lipid homeostasis with age in PGKBP3 and PGKmutBP3 mice compared with wild-type mice. Body weight, glucose tolerance, insulin tolerance, visceral fat, interscapular brown adipose tissue (BAT), serum lipids, and pancreas histology were examined at age 3, 6, and 12 months.
View Article and Find Full Text PDFBackground: The present study was undertaken to test hypothesis that altered transcription of secretory Phospholipase A2 (sPLA2) gene in rat liver is regulated by CCAAT/enhancer binding protein δ (C/EBPδ), and to assess its relationship to hepatic gluconeogenesis during the progression of sepsis.
Methods: Sepsis was induced by Cecal Ligation and Puncture (CLP). Experiments were divided into three groups, control, early sepsis (9 h after CLP), and late sepsis (18 h after CLP).
Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1-7 (early), 8-14 (mid) and 15-21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks.
View Article and Find Full Text PDFHuman IGF binding protein-3 (hIGFBP-3) overexpression in mice causes hyperglycemia, but its effect on β-cell function is unknown. We compared wild-type mice with mice overexpressing hIGFBP-3 [phoshoglycerate kinase (PGK)BP3] and mutant (Gly⁵⁶/Gly⁸⁰/Gly⁸¹)hIGFBP-3 devoid of IGF binding affinity (PGKmBP3). Intraperitoneal glucose and insulin tolerance tests were performed, and glucose, IGFBP-3, IGF-I, and insulin were determined.
View Article and Find Full Text PDFTo gain more insights into the translational and PTM that occur in rat offspring exposed to alcohol in utero, 2-D PAGE with total, phospho- and glycoprotein staining and MALDI-MS/MS and database searching were conducted. The results, based on fold-change expression, revealed a down-regulation of total protein expression by prenatal alcohol exposure in 7-day-old and 3-month-old rats. There was an up-regulation of protein phosphorylation but a down-regulation of glycosylation by prenatal alcohol exposure in both age groups.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2008
Prenatal alcohol exposure (EtOH) results in insulin resistance in rats of both sexes with increased expression of hepatic gluconeogenic genes and glucose production. To investigate whether hepatic insulin signaling is defective, we studied 3-mo-old female offspring of dams that were given EtOH during pregnancy compared with those from pair-fed and control dams. We performed an intraperitoneal pyruvate tolerance test, determined the phosphorylation status of hepatic phosphoinositide-dependent protein kinase-1 (PDK1), Akt, and PKCzeta before and after intravenous insulin bolus, and measured mRNA and in vivo acetylation of TRB3 (tribbles 3) and PTEN (phosphatase and tensin homolog deleted on chromosome ten) as well as the expression of the histone acetylase (HAT) PCAF (p300/CREB-binding protein-associated factor), histone deacetylase-1 (HDAC1), and HAT and HDAC activities.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2007
Adverse events during pregnancy, including prenatal ethanol (EtOH) exposure, are associated with insulin-resistant diabetes in male rat offspring, but it is unclear whether this is true for female offspring. We investigated whether prenatal EtOH exposure alters glucose metabolism in adult female rat offspring and whether this is associated with reduced in vivo insulin signaling in skeletal muscle. Female Sprague-Dawley rats were given EtOH, 4 g.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2006
Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy.
View Article and Find Full Text PDFRat offspring exposed to ethanol (EtOH rats) during pregnancy are insulin resistant, but it is unknown whether they have increased gluconeogenesis. To address this issue, we determined blood glucose and liver gluconeogenic genes, proteins, and enzyme activities before and after insulin administration in juvenile and adult EtOH rats and submitted adult EtOH rats to a pyruvate challenge. In juvenile rats, basal glucose; peroxisome proliferator-activated receptor-coactivator-1alpha protein and mRNA; and phosphoenolpyruvate carboxykinase enzyme activity, protein, and mRNA were similar between groups.
View Article and Find Full Text PDFIt is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats.
View Article and Find Full Text PDFOxidative stress is defined as the imbalance between the generation of reactive oxygen species and antioxidant defense mechanisms. The cardiovascular system is a major target for reactive oxygen species. Cardiomyocytes and the vasculature of the heart can be severely damaged as a result of oxidative stress.
View Article and Find Full Text PDF