We reveal the gate-tunable Berry curvature dipole polarizability in Dirac semimetal Cd_{3}As_{2} nanoplates through measurements of the third-order nonlinear Hall effect. Under an applied electric field, the Berry curvature exhibits an asymmetric distribution, forming a field-induced Berry curvature dipole, resulting in a measurable third-order Hall voltage with a cubic relationship to the longitudinal electric field. Notably, the magnitude and polarity of this third-order nonlinear Hall effect can be effectively modulated by gate voltages.
View Article and Find Full Text PDFSci Bull (Beijing)
November 2023
The non-volatile magnetoresistive random access memory (MRAM) is believed to facilitate emerging applications, such as in-memory computing, neuromorphic computing and stochastic computing. Two-dimensional (2D) materials and their van der Waals heterostructures promote the development of MRAM technology, due to their atomically smooth interfaces and tunable physical properties. Here we report the all-2D magnetoresistive memories featuring all-electrical data reading and writing at room temperature based on WTe/FeGaTe/BN/FeGaTe heterostructures.
View Article and Find Full Text PDFBerry curvature dipole plays an important role in various nonlinear quantum phenomena. However, the maximum symmetry allowed for nonzero Berry curvature dipole in the transport plane is a single mirror line, which strongly limits its effects in materials. Here, via probing the nonlinear Hall effect, we demonstrate the generation of Berry curvature dipole by applied dc electric field in WTe_{2}, which is used to break the symmetry constraint.
View Article and Find Full Text PDFTopological materials that possess spin-momentum locked surface states provide an ideal platform to manipulate the quantum spin states by electrical means. However, an antisymmetric magnetoresistance (MR) superimposed on the spin-polarized transport signals is usually observed in the spin potentiometric measurements of topological materials, rendering more power loss and reduced signal-to-noise ratio. Here we reveal the mechanism of surface-bulk interaction for the observed antisymmetric linear MR in the spin transport of Dirac semimetal CdAs nanoplates.
View Article and Find Full Text PDFCharacterized by bulk Dirac or Weyl cones and surface Fermi-arc states, topological semimetals have sparked enormous research interest in recent years. The nanostructures, with large surface-to-volume ratio and easy field-effect gating, provide ideal platforms to detect and manipulate the topological quantum states. Exotic physical properties originating from these topological states endow topological semimetals attractive for future topological electronics (topotronics).
View Article and Find Full Text PDFCold shock proteins (CSPs) enhance acclimatization of bacteria to adverse environmental circumstances. The Escherichia coli CSP genes CspA and CspB were modified to plant-preferred codon sequences and named as SeCspA and SeCspB. Overexpression of exogenous SeCspA and SeCspB in transgenic Arabidopsis lines increased germination rates, survival rates, and increased primary root length compared to control plants under drought and salt stress.
View Article and Find Full Text PDFTiming of flowering is not only an interesting topic in developmental biology, but it also plays a significant role in agriculture for its effects on the maturation time of seed. The hexaploid wheat (Triticum aestivum) is one of the most important crop species whose flowering time, i.e.
View Article and Find Full Text PDFBackground: Using the cross of wheat and maize is a very useful way to produce wheat haploid plants by chromosome elimination. Dwarf male sterile wheat (DMSW) and corn inducer are potential important germplasm for wheat breeding by recurrent selection and doubled haploid strategies. There is no report yet to achieve the haploid plants from DMSW induced by maize inbred line and especially the corn inducer.
View Article and Find Full Text PDFGenetic transformation is a valuable tool for direct crop improvement and functional genomics study. Unfortunately, wheat is considered as a recalcitrant plant to genetic transformation due to its low efficiency and genotype dependency. To overcome these problems, various transformation methods such as biolistic bombardment, Agrobacterium tumefaciens, pollen-tube pathway, ion implantation, laser microbeams puncture, treatment with polyethylene glycol and ultrasonic wave, and electroporation have been reported in wheat using various types of explants including immature embryos, mature embryos, anthers derived calluses, inflorescences, apical meristems, and other floral organs.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2007
Obtaining marker-free plants with high efficiency will benefit the environmental release of transgenic crops. To achieve this point, a binary vector pNB35SVIP1 with three T-DNAs was constructed by using several mediate plasmids, in which one copy of bar gene expression cassette and two copies of VIP1 gene expression cassette were included. EHA101 Agrobacterium strain harboring the final construct was applied to transform soybean (Glycine max) cotyledon nodes.
View Article and Find Full Text PDFA novel DREB (dehydration responsive element binding protein) homologous gene, GmDREB2, was isolated from soybean. Based on its similarity with AP2 domains, GmDREB2 was classified into A-5 subgroup in DREB subfamily in AP2/EREBP family. Expression of GmDREB2 gene was induced by drought, high salt, and low temperature stresses and abscisic acid treatment.
View Article and Find Full Text PDFIn this study, the level of amylose was reduced in wheat seeds by RNAi strategy. Because the synthesis of amylose is catalyzed by the granule-bound starch synthase I (GBSSI or WAXY protein), the Waxy gene of wheat was isolated from wheat seeds by using RT-PCR. Southern analysis confirmed that there were three Waxy genes in wheat genome.
View Article and Find Full Text PDF