Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task.
View Article and Find Full Text PDFVariants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV.
View Article and Find Full Text PDFCoronaviruses in general are a zoonotic pathogen with significant cross-species transmission. They are widely distributed in nature and have recently become a major threat to global public health. Vaccines are the preferred strategy for the prevention of coronaviruses.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) causes severe diarrhea and even death in piglets, resulting in significant economic losses to the pig industry. Because of the ongoing mutation of PEDV, there might be variations between the vaccine strain and the prevailing strain, causing the vaccine to not offer full protection against different PEDV variant strains. Therefore, it is necessary to develop anti-PEDV drugs to compensate for vaccines.
View Article and Find Full Text PDFLimited information on the virome and bacterial community hampers our ability to discern systemic ecological risk factors that cause cattle diarrhea, which has become a pressing issue in the control of disease. A total of 110 viruses, 1,011 bacterial genera, and 322 complete viral genomes were identified from 70 sequencing samples mixed with 1,120 fecal samples from 58 farms in northeast China. For the diarrheic samples, the identified virome and bacterial community varied in terms of composition, abundance, diversity, and geographic distribution in relation to different disease-associated ecological factors; the abundance of identified viruses and bacteria was significantly correlated with the host factors of clinical status, cattle type, and age, and with environmental factors such as aquaculture model and geographical location ( < 0.
View Article and Find Full Text PDFInfection with porcine epidemic diarrhea virus (PEDV) causes severe watery diarrhea in newborn piglets, leading to substantial financial losses for the swine industry. In this study, we screened small molecule drugs targeting 3 C-like protease (3CLpro) by molecular docking, and further evaluated the antiviral activity of the screened drugs against PEDV. Results showed that octyl gallate (OG), a widely used food additive, exhibited strong binding affinity with the 3CLpro active sites of PEDV.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipogenesis and is expressed as two isoforms, PPARγ1 and PPARγ2. Our previous lentiviral overexpression study showed that PPARγ1 and PPARγ2 differentially regulated proliferation, differentiation, and apoptosis of the immortalized chicken preadipocyte cell line (ICP2). However, we cannot rule out the possibility that the endogenous expression of PPARγ isoforms may compromise our findings.
View Article and Find Full Text PDFUrban resilience, as an important ability to deal with disasters in the process of urbanization, has been paid more and more attention as the result of the increasing risks that are caused by rapid urbanization. China is taking the county level as the basic unit to promote new-type urbanization and constructing resilient cities has become one of the development strategies. However, to achieve this strategy researchers need to analyze the interaction between county urbanization and urban resilience and its driving mechanism, which have been paid little attention.
View Article and Find Full Text PDF() has become an emerging opportunistic pathogen due to its strong biofilm formation ability. Simultaneously, the biofilm of bacteria plays an important role in antibiotic resistance and chronic infection. Here, we confirmed that rutin can effectively inhibit biofilm formation in , of which the inhibition mechanism involves its ability to interact with imidazole glycerol phosphate dehydratase (IGPD), a key enzyme in the process of biofilm formation.
View Article and Find Full Text PDFSubversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication.
View Article and Find Full Text PDFStaphylococcus xylosus (S. xylosus) is one of the emerging pathogens causing bovine mastitis with high rate of isolation in most of the reported clinical and field cases. To verify the role of glutamine synthetase (GS) in the pathogenesis of S.
View Article and Find Full Text PDFis an important zoonotic pathogen. The massive use of tylosin and other antibiotics in swine production has led to the emergence of resistant phenotypes of . However, there are no adequate measures available to address the problem of bacterial resistance.
View Article and Find Full Text PDFStaphylococcus xylosus (S. xylosus) is a type of coagulase-negative Staphylococcus, which was previously considered as non-pathogenic. However, recent studies have linked it with cases of mastitis in cows.
View Article and Find Full Text PDFBackground: As a kind of opportunist pathogen, Staphylococcus xylosus (S. xylosus) can cause mastitis. Antibiotics are widely used for treating infected animals and tylosin is a member of such group.
View Article and Find Full Text PDFGlutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in most biological growth and biofilm formation, suggesting that GS may be used as a promising target for antibacterial therapy. We asked whether a GS inhibitor could be found as an anti-infective agent of (). Here, computational prediction followed by experimental testing was used to characterize GS.
View Article and Find Full Text PDFEpigenetic reprogramming and somatic cell nuclear transfer (SCNT) cloning efficiency were recently enhanced using histone deacetylase inhibitors (HDACis). In this study, we investigated the time effect of CI994, an HDACi, on the blastocyst formation rate, acetylation levels of H3K9 and H4K12, DNA methylation levels of anti-5-methylcytosine (5mC), and some mRNA expression of pluripotency-related genes in pig SCNT embryos. Treatment with 10 μM CI994 for 24 hours significantly improved the blastocyst formation rate of SCNT embryos in comparison with the untreated group (p < 0.
View Article and Find Full Text PDFAccumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not.
View Article and Find Full Text PDF() is an AT-rich and coagulase-negative (CNS). It is normally regarded as non-pathogenic, however, recent studies have demonstrated that it is related to human opportunistic infections and bovine mastitis. In addition, strains have the ability to form biofilm.
View Article and Find Full Text PDFIn this study we examined the effects of JNJ-7706621, a cyclin-dependent kinase inhibitor, on the in vitro growth of pig embryos that had been produced either by parthenogenetic activation (PA) or somatic cell nuclear transfer (SCNT). A significantly higher percentage of PA embryos reached the blastocyst stage by Day 7 after exposure to 10µM JNJ-7706621 for 4h compared with embryos exposed to 5µgmL-1 cytochalasin B for 4h (P<0.05).
View Article and Find Full Text PDFThe imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in () for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening.
View Article and Find Full Text PDFObjectives: To explore the effects of heterozygous myostatin-knockout (MSNT) on muscle characteristics, specifically fiber-type distribution and expression of myosin heavy chain isoforms in pigs.
Results: The fiber cross-sectional area of the semitendinosus and semimembranosus muscles were much larger in MSTN pigs at birth than in wild-type (WT) pigs. MSTN pigs had a higher proportion of fast-type fibers and lower succinate dehydrogenase activity in muscles than WT pigs.