MicroRNAs (miRNAs) play crucial roles in regulating plant development and stress responses. However, the functions and mechanism of intronic miRNAs in plants are poorly understood. This study reports a stress-responsive RNA splicing mechanism for intronic miR400 production, whereby miR400 modulates reactive oxygen species (ROS) accumulation and improves plant tolerance by downregulating its target expression.
View Article and Find Full Text PDFGlyphosate is an herbicide commonly used in agriculture, and its widespread use has adversely affected the survival of nontarget organisms. Among these organisms, bees in particular are important pollinators, and declining bee populations have severely affected crop yields around the world. However, the molecular mechanism by which glyphosate harms bees remains unclear.
View Article and Find Full Text PDFArch Insect Biochem Physiol
September 2021
Mitogen-activated protein kinase (MAPK) cascades play a pivotal role in environmental responses and developmental processes in plants. Previous researches mainly focus on the MAPKs in groups A and B, and little is known on group C. In this study, we isolated and characterized GhMPK7, which is a novel gene from cotton belonging to the group C MAPK.
View Article and Find Full Text PDFThe discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene.
View Article and Find Full Text PDFShi Yan Sheng Wu Xue Bao
June 2003
In previous study, we have proved that the resistance of the transgenic tobacco plants containing untranslatable PVYN CP gene was mediated by PVYN CP transgene RNAs, and the resistance mechanism was similar to PTGS. In this paper, T0 progeny transgenic lines with different resistant levels were selected to further study the transgene inheritance and resistant stability of transgenic plants. Results showed that T0 progeny susceptible lines, which contained 1-2 transgene copies, displayed a 3:1 segregation ratio in T1 progeny lines; T0 progeny middle resistant lines, which contained 3-4 transgene copies, revealed a 15:1 segergation ratio in T1 progeny lines; T0 progeny highly resistant lines, which contained 5-7 transgene copies, followed 15:1 or 63:1 segregation pattern in T1 progeny lines.
View Article and Find Full Text PDF