Publications by authors named "Xing Hua Ma"

NbO-type ceramics (where = Mg, Ca, Mn, Co, Ni, Zn and = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity () and high quality factor ( × ). Although ZnTiZrNbO ceramic exhibits impressive microwave dielectric properties, including an of 29.75, a × of 107,303 GHz, and a of -24.

View Article and Find Full Text PDF

Three PbTiO nanostructures were synthesized using a one-step hydrothermal reaction with different TiO powders as Ti sources, and their gas-sensing properties were investigated. The sensor comprising PbTiO nanoplates (NPs) exhibited a high response (resistance ratio = 80.4) to 5 ppm ethanol at 300 °C and could detect trace concentrations of ethanol down to 100 ppb.

View Article and Find Full Text PDF

Background: Few studies have shown nomograms that may predict disease-specific survival (DSS) probability after curative D2 gastrectomy for advanced gastric cancer (AGC), particularly among Chinese patients. This study sought to develop an elaborative nomogram that predicts long-term DSS for AGC in Chinese patients.

Methods: A retrospective study was conducted on 6753 AGC patients undergoing D2 gastrectomy between January 1, 2000 and December 31, 2012 from three large medical hospitals in China.

View Article and Find Full Text PDF

Despite tellurium being less abundant in the Earth's crust than gold, platinum, or rare-earth elements, the number of industrial applications of tellurium has rapidly increased in recent years. However, to date, many properties of tellurium and its associated compounds remain unknown. For example, formation mechanisms of many tellurium nanostructures synthesized so far have not yet been verified, and it is unclear why tellurium can readily transform to other compounds like silver telluride by simply mixing with solutions containing silver ions.

View Article and Find Full Text PDF

Background/aims: After myocardial infarction (MI), cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1) has been recently proposed as an attractive target of fibrosis.

View Article and Find Full Text PDF