A signal tag was successfully designed by means of two-step reduction approach, in which CuNi nanoparticles (CuNi NPs) uniformly distributed on the surface of multiwall carbon nanotubes (MWCNTs). This composites not only inherits excellent conductivity and surface area of MWCNTs, but also endows the material with superior electrocatalytic performance due to the introduction of CuNi NPs. Then, a ratiometric sensing platform coupled with built-in correction ability for convenient direct determination of chloramphenicol (CAP) was exploited, wherein Cu@Ni/MWCNTs were used as signal label and ferrocene (Fc) as internal reference.
View Article and Find Full Text PDFNon-radical advanced oxidation processes (AOPs) have gained significant attention as a highly promising approach for eliminating persistent pollutants from water. These methods demonstrate superior effectiveness in mitigating the interference of coexisting anions compared to traditional radical-based methods. In this study, a singlet oxygen (O)-dominated process is developed for the degradation of metronidazole (MNZ), employing bimetallic-doped hollow carbon spheres (CoCu-HCS) as catalysts and peroxymonosulfate (PMS) as the oxidant.
View Article and Find Full Text PDFOxidative damage is pivotal in the pathogenesis and progression of a myriad of neurological disorders. The current study was designed to elucidate the therapeutic potential of conditioned medium from bone marrow-derived mesenchymal stromal cells (BMSC-CM) and to delineate the underlying mechanisms, using a neuronal oxidative injury model for this purpose. Rat pheochromocytoma PC12 cells were exposed to HO to establish an oxidative injury model, followed by treatment with BMSC-CM or co-cultivation with BMSCs in a transwell apparatus.
View Article and Find Full Text PDFDeveloping a ratiometric photoelectrochemical (PEC) aptasensor that can produce cathode-anode dual photocurrent signals is still a great challenge. Herein, we report a novel portable voltage-resolved ratiometric PEC aptasensor for the determination of chloramphenicol (CAP) with a digital multimeter (DMM) and voltage and current signal generator (VCSG) readout. Ru(bpy)-BiOBr heterojunction was employed as the only photoactive material, which is switched between type II and Z - scheme by varying the bias voltage (+0.
View Article and Find Full Text PDFProtein interacting with C-kinase 1 (PICK1) is important for synaptic plasticity through directing transport of glutamate receptors and other proteins. PICK1 gene variants have been associated with schizophrenia. To examine the role of PICK1 in schizophrenia-related behaviors, mice with a mutation in the PICK1 lipid-interacting BAR domain were characterized.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
February 2025
Background: Rotator cuff tears (RCTs) often result in muscle atrophy, compromising surgical outcomes and recovery. Mitochondrial dysfunction is implicated in this process, suggesting potential for mitochondria-based therapies. This study aimed to investigate the effects of platelet mitochondria (Plt-Mito) administration into the supraspinatus muscle (SSP) following RCTs.
View Article and Find Full Text PDFBackground: Neoadjuvant chemoradiotherapy (nCRT) in patients with oesophageal squamous cell carcinoma (OSCC) may lead to clinical complete response (cCR). It is important to know the accuracy of clinical response evaluations (CREs) before advocating active surveillance instead of oesophagectomy.
Methods: This was a prospective, multicentre study of patients with locally advanced OSCC.
T-2 toxin is widely distributed in cereal-based matrices and poses a potential risk to human health. Currently, most methods for detecting T-2 toxin are time-consuming and have low detection signals. Therefore, it is urgency to develop a method for rapid detection of T-2 toxin with high accuracy.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are a new type of porous organic crystalline material, which have become an emerging platform for promoting the development of green energy technology due to their high surface area, adjustable pores, low skeleton density, and easy functionalization. In recent years, with the continuous advancement of synthesis technology, the synthesis efficiency and sustainability of COFs have been significantly improved, from traditional solvothermal methods to the emergence of various green synthesis strategies such as ion thermal, mechanochemical, and ultrasound assisted methods. This article reviews the main synthesis methods of COFs and explores their applications in the field of green energy, such as photocatalysis, gas adsorption and separation, electrocatalysis, battery, supercapacitor and Proton exchange membrane fuel cell.
View Article and Find Full Text PDFThe development of aggregation-induced emission (AIE) luminophores is a fascinating and promising topic in electrochemiluminescence (ECL) bioanalysis. Herein, the AIE-active but water-insoluble [Ir(bt)₂(acac)] (bt = 2-phenylbenzothiazole, acac = acetylacetonate) was encapsulated within poly(styrene-maleic anhydride) (PSMA) using a simple nanoprecipitation method. This encapsulation strategy could effectively limit the free motion of Ir(bt)₂(acac) and trigger the aggregation-induced electrochemiluminescence (AIECL) effect.
View Article and Find Full Text PDFTranscatheter arterial chemoembolization (TACE) is the principal treatment option for patients with unresectable hepatocellular carcinoma (HCC). However, the hypoxic microenvironment following TACE can promote angiogenesis and suppress tumor ferroptosis, resulting in an unfavorable prognosis. Tirapazamine (TPZ), a hypoxia-activated prodrug with specific cytotoxicity for hypoxic cells, making it a potential candidate for TACE.
View Article and Find Full Text PDFIsocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive.
View Article and Find Full Text PDFBackground: The present study aims to explore the metastasis-related signatures in connection with tumor microenvironment (TME), revealing new molecular targets promising in improving osteosarcoma (OS) patients' outcomes.
Methods: The high-throughput sequencing data was downloaded from the TARGET database and performed the ESTIMATE algorithm. Metastasis-related information was obtained from the GSE21257 dataset.
Here a bioengineered platform is introduced to investigate adverse effects of environmental materials on the human cornea. Using primary cells, this system is capable of reproducing the differentiated corneal epithelium and its underlying stroma in the human eye, which can then be treated with externally applied solid, liquid, or gaseous substances in a controlled manner and under physiologically relevant conditions. The proof-of-principle of how this system can be used to simulate human ocular exposure to different classes of environmental toxicants for direct visualization and quantitative analysis of their potential to induce acute corneal injury and inflammation is demonstrated.
View Article and Find Full Text PDFPhotoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.
View Article and Find Full Text PDFMassive blood loss is the main cause of prehospital trauma-related death, the development of rapid and effective hemostatic materials is imminent. Injectable hydrogels have the advantages of covering irregular bleeding sites and quickly closing the wound. However, its inherent viscosity can easily precipitate tissue adhesion and other complications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Membranes have extensive applications in catalysis, separation, antimicrobial activities, and sensing. However, developing a simple and environmentally friendly method for preparing membranes remains challenging. Here, we report a novel strategy for fabricating self-standing inorganic-organic composite films at the miscible liquid/liquid interface using a soft spray technique.
View Article and Find Full Text PDFFluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.
View Article and Find Full Text PDFTin-based sulfides, possessing a unique layered structure and a high theoretical capacity, stand as highly prospective contenders for anode materials in lithium-ion batteries (LIBs). Nevertheless, the pronounced volume expansion that occurs during lithium storage and poor capacity retention have limited its progress toward commercialization. Herein, we designed and prepared a SnS/RGO composite with a three-dimensional porous structure by sulfurizing the SnO(OH)/GO precursor.
View Article and Find Full Text PDFBreast cancer (BC) is a complex and heterogeneous disease, and its onset and progression involve the interplay of multiple molecular mechanisms. Chemokines and their receptors are key regulators of cell migration and immune responses and contribute significantly to the pathophysiology of BC. This article reviews the classification, functions, and mechanisms of chemokines and their receptors in the proliferation, migration, invasion, and angiogenesis of BC cells.
View Article and Find Full Text PDFThis review provides an in-depth summary of the development of anti-cancer drugs for tumor-associated macrophages (TAMs), with a particular focus on the development and tissue specialization of macrophages, and factors influencing the polarization of M1 and M2 macrophages, and mechanistic insights underlying the targeting therapeutic approaches. TAMs, pivotal in the tumor microenvironment, exhibit notable plasticity and diverse functional roles. Influenced by the complex milieu, TAMs polarize into M1-type, which suppresses tumors, and M2-type, which promotes metastasis.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and the development of accurate predictive models for prognosis and drug sensitivity remains challenging.
Methods: We integrated laboratory data and public cohorts to conduct a multi-omics analysis of HCC, which included bulk RNA sequencing, proteomic analysis, single-cell RNA sequencing (scRNA-seq), spatial transcriptomics sequencing (ST-seq), and genome sequencing. We constructed a tumor purity (TP) and tumor microenvironment (TME) prognostic risk model.
Purpose: This first-in-human study aimed to evaluate the radiation dosimetry and whole-body biodistribution of [F]AlF-NYM005, a novel small-molecule carbonic anhydrase IX (CAIX) targeting agent, and to investigate its ability to detect CAIX-positive tumors using PET scans in a cohort of clear cell renal cell carcinoma (ccRCC) patients.
Methods: [F]AlF-NYM005 was synthesized using a fully automatic cassette module Mortenon M1 (Nuoyu, China). Thirty-five patients with a suspicious lesion considered primary renal malignancy or a history of ccRCC were prospectively recruited and studied.
Background: Hierarchical management of sports risk is highly critical to ensure the safety of sports rehabilitation. Early identification, timely prevention and control of sports-related risk factors, and enhanced supervision and guidance can provide a basis for the formulation of sports programmes and the setting of sports monitoring levels.
Objective: This study aimed to retrieve, evaluate, and integrate evidence for the stratified management of motor risk in patients with a cardiac implantable electronic device (CIED).