Sepsis is caused by a dysregulated immune response to infection and is a leading cause of mortality globally. To date, no specific therapeutics are available to treat the underlying septic response. We and others have shown that recombinant human annexin A5 (Anx5) treatment inhibits pro-inflammatory cytokine production and improves survival in rodent sepsis models.
View Article and Find Full Text PDFThe J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development.
View Article and Find Full Text PDFControlling the domain evolution is critical both for optimizing ferroelectric properties and for designing functional electronic devices. Here we report an approach of using the Schottky barrier formed at the metal/ferroelectric interface to tailor the self-polarization states of a model ferroelectric thin film heterostructure system SrRuO/(Bi,Sm)FeO. Upon complementary investigations of the piezoresponse force microscopy, electric transport measurements, X-ray photoelectron/absorption spectra, and theoretical studies, we demonstrate that Sm doping changes the concentration and spatial distribution of oxygen vacancies with the tunable host Fermi level which modulates the SrRuO/(Bi,Sm)FeO Schottky barrier and the depolarization field, leading to the evolution of the system from a single domain of downward polarization to polydomain states.
View Article and Find Full Text PDFDeveloping advanced tools for multicomponent analysis is an open challenge in engineering and life science. Herein, multicompartmental hydrogel microspheres with multi-material compatibility and structural scalability are developed as a tool for multicomponent analysis at a single-particle level. Microfluidic technology endows particles with adjustable sizes and super-segmented layouts that can be used to load various analyte probes.
View Article and Find Full Text PDFIn this study, we propose a novel ion formation simulation method for electrospray ionization (ESI) and atmosphere pressure interface (API). In this method, not the sheer particle trajectory, but the evolution of droplets and the offspring of gaseous ions are introduced instead. For the first time, the dynamic droplet-to-ion transformation process in the API of ESI-MS is visualized.
View Article and Find Full Text PDFInverted perovskite solar cells (PSCs) are a promising technology for commercialization due to their reliable operation and scalable fabrication. However, in inverted PSCs, depositing a high-quality perovskite layer comparable to those realized in normal structures still presents some challenges. Defects at grain boundaries and interfaces between the active layer and carrier extraction layer seriously hinder the power conversion efficiency (PCE) and stability of these cells.
View Article and Find Full Text PDFFifty-three shade tolerance genes with 281 alleles in the SCSGP were identified directly using gene-allele sequence as markers in RTM GWAS, from which optimized crosses, evolutionary motivators, and gene-allele networks were explored. Shade tolerance is a key for optimal cultivation of soybean inter/relay-cropped with corn. To explore the shade tolerance gene-allele system in the southern China soybean germplasm, we proposed using gene-allele sequence markers (GASMs) in a restricted two-stage multi-locus model genome-wide association study (GASM-RTM-GWAS).
View Article and Find Full Text PDFIn soybeans ( (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT).
View Article and Find Full Text PDFTwo-dimensional (2D) crystal-to-crystal transition is an important method in crystal engineering because of its ability to directly create diverse crystal materials from one crystal. However, steering a 2D single-layer crystal-to-crystal transition on surfaces with high chemo- and stereoselectivity under ultra-high vacuum conditions is a great challenge because the transition is a complex dynamic process. Here, we report a highly chemoselective 2D crystal transition from radialene to cumulene with retention of stereoselectivity on Ag(111) via retro-[2 + 1] cycloaddition of three-membered carbon rings and directly visualize the transition process involving a stepwise epitaxial growth mechanism by the combination of scanning tunneling microscopy and non-contact atomic force microscopy.
View Article and Find Full Text PDFBackground: The aim of this study was to compare outcomes after total hip arthroplasty (THA) in patients who have preoperative asymptomatic gluteal tendinosis (aGT) to a control group with no gluteal tendinosis (GT).
Methods: A retrospective analysis was performed using data from patients who underwent THA between March 2016 and October 2020. An aGT was diagnosed using hip magnetic resonance imaging (MRI) without clinical symptoms.
Environ Sci Pollut Res Int
July 2023
Sulfur dioxide, which comes from the flue gas emitted by the steel and coal power industries, is extremely harmful to humans and the natural environment. Due to its high efficiency and economy, dry fixed-bed desulfurization technology and Ca-based adsorbents have attracted wide attention. In this paper, a detailed outline of the process of the fixed-bed reactor, performance indexes, economic value, recent research, and industrial applications of the dry fixed-bed desulfurization process was summarized.
View Article and Find Full Text PDFBackground: Many studies have focused on the femoral tunnel technique and fixation method, but few studies have involved the tibial tunnel technique and fixation method. The all-inside technique is one of the new techniques that has been described in recent years. All-inside anterior cruciate ligament (ACL) reconstruction is based on a tibial socket instead of a full tunnel.
View Article and Find Full Text PDFObjective: The aim of the work described here was to investigate the feasibility of using multimodality ultrasound in quantitative evaluation of the intra-compartmental pressure (ICP) and perfusion pressure (PP) changes in acute compartment syndrome (ACS).
Methods: Infusion technique was used to increase the ICP of the anterior compartment of 10 rabbits from baseline to 20, 30, 40, 50, 60, 70 and 80 mmHg. The anterior compartment was evaluated with conventional ultrasound, shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS).
A convenient and efficient approach was developed to synthesize α-Kdo -glycosides based on the TfO/(-Tol)SO preactivation strategy using peracetylated Kdo thioglycoside as a donor. Under the optimized reaction conditions, several -glycoside products, including α-(2 → 1)-, α-(2 → 2)-, α-(2 → 3)-, and α-(2 → 6)-Kdo products, were stereoselectively synthesized in high yields. Remarkably, a series of aromatic α-Kdo -glycosides were first and successfully constructed in high yields.
View Article and Find Full Text PDF2D perovskites based on Formamidinium (FA) hold the potential for excellent stability and a broad absorption range, making them attractive materials for solar cells. However, FA-based 2D perovskites produced via one-step processing exhibit poor crystallinity and random quasi-quantum wells (QWs), leading to subpar photovoltaic performance. In this study, a seed-induced growth approach is introduced employing MAPbCl and BDAPbI in the deposition of FA-based Dion-Jacobson 2D perovskite films.
View Article and Find Full Text PDFFlexible solar cells have a lot of market potential for application in photovoltaics integrated into buildings and wearable electronics because they are lightweight, shockproof and self-powered. Silicon solar cells have been successfully used in large power plants. However, despite the efforts made for more than 50 years, there has been no notable progress in the development of flexible silicon solar cells because of their rigidity.
View Article and Find Full Text PDFNoninvasive fluorescence (FL) imaging and high-performance photocatalytic therapy (PCT) are opposing optical properties that are difficult to combine in a single material system. Herein, a facile approach to introducing oxygen-related defects in carbon dots (CDs) via post-oxidation with 2-iodoxybenzoic acid is reported, in which some nitrogen atoms are substituted by oxygen atoms. Unpaired electrons in these oxygen-related defects rearrange the electronic structure of the oxidized CDs (ox-CDs), resulting in an emerging near-infrared (NIR) absorption band.
View Article and Find Full Text PDFMalignant nephrosclerosis is a thrombotic microangiopathy associated with abnormal local activation of the complement alternative pathway (AP). However, the mechanism underlying local AP activation is not fully understood. We hypothesized that complement factor D (CFD) secreted by endothelial cells triggers vascular dysfunction in malignant nephrosclerosis via local complement activation.
View Article and Find Full Text PDFAnalysis of the changes of microorganisms during Chinese Feng-flavor Daqu fermentation, and the specific contribution of different environmental factors to Daqu microorganisms. High throughput sequencing technology and SourceTracker software were used to analyze the microbial diversity of Feng-flavor Daqu before and after fermentation. 85 fungal and 105 bacterial were detected in the newly pressed Feng-flavor Daqu, while 33 fungal and 50 bacterial in the mature Daqu, and 202 fungal and 555 bacterial in the environmental samples.
View Article and Find Full Text PDFAtmospheric Water Harvesting (AWH) using porous adsorbents is emerging as a promising solution to combat water shortage. Thus, a clearer understanding of the developing trends and optimization strategies of different porous adsorbents can be extremely helpful. Therefore, in this concept, the different types of porous adsorbents and AWH devices are briefly introduced with a focus on the factors that influence the static and kinetic properties of porous adsorbents and their respective optimization strategies.
View Article and Find Full Text PDFThe carrier lifetime is one of the key parameters for perovskite solar cells (PSCs). However, it is still a great challenge to achieve long carrier lifetimes in perovskite films that are comparable with perovskite crystals owning to the large trap density resulting from the unavoidable defects in grain boundaries and surfaces. Here, by regulating the electronic structure with the developed 2-thiopheneformamidinium bromide (ThFABr) combined with the unique film structure of 2D perovskite layer caped 2D/3D polycrystalline perovskite film, an ultralong carrier lifetime exceeding 20 µs and carrier diffusion lengths longer than 6.
View Article and Find Full Text PDFOn-surface synthesis, as a bottom-up synthetic method, has been proven to be a powerful tool for atomically precise fabrication of low-dimensional carbon nanomaterials over the past 15 years. This method relies on covalent coupling reactions that occur on solid substrates such as metal or metal oxide surfaces under ultra-high-vacuum conditions, and the achievements with this method have greatly enriched fundamental science and technology. However, due to the complicated reactivity of organic groups, distinct diffusion of reactants and intermediates, and irreversibility of covalent bonds, achieving the high selectivity of covalent coupling reactions on surfaces remains a great challenge.
View Article and Find Full Text PDFBackground: Liver diseases are a spectrum of diseases that include hepatic steatosis, nonalcoholic fatty liver disease, hepatitis, liver fibrosis, cirrhosis, and hepatic cancer. These diseases not only severely decrease the quality of life for patients, but also cause financial burden. Although apigenin (APG) has recently become the primary treatment for liver injuries and diseases (LIADs), there has been no systematic review of its use.
View Article and Find Full Text PDFThe modification of perovskite precursor by a series of phosphoryl chloride molecules can indeed improve the performance of perovskite LEDs (Pero-LEDs). The bis(2-oxo-3-oxazolidinyl) phosphinic chloride can not only regulate the phase distribution by controlling the crystallization rate but also passivate the defects of the quasi-2D perovskite. Highly efficient and reproducible Pero-LEDs are achieved with an maximum external quantum efficiency (EQE) of 20.
View Article and Find Full Text PDF