Publications by authors named "Xing Fu Zou"

In this paper, with the assumption that infectious individuals, once recovered for a period of fixed length, will relapse back to the infectious class, we derive an epidemic model for a population living in a two-patch environment (cities, towns, or countries, etc.). The model is given by a system of delay differential equations with a fixed delay accounting for the fixed constant relapse time and a non-local term caused by the mobility of the individuals during the recovered period.

View Article and Find Full Text PDF

Motivated by an age-structured population model over two patches that assumes constant dispersal rates, we derive a modified model that allows density-dependent dispersal, which contains both nonlinear dispersal terms and delayed non-local birth terms resulted from the mobility of the immature individuals between the patches. A biologically meaningful assumption that the dispersal rate during the immature period depends only on the mature population enables us investigate the model theoretically. Well-posedness is confirmed, criteria for existence of a positive equilibrium are obtained, threshold for extinction/persistence is established.

View Article and Find Full Text PDF