Sci China Life Sci
January 2025
Background: The precise characterization of individual tumors and immune microenvironments using transcriptome sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcriptomes for personalized cancer treatment.
Methods: Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of personalized cancer combination therapy optimization using single-cell transcriptomes.
Gastric cancer has two distinct subtypes: the diffuse (DGC) and the intestinal (IGC) subtypes. Morphologically, the former each consists of numerous scattered tiny tumors while the latter each has one or a few solid biomasses. The former tends to be more aggressive and takes place in younger patients than the latter.
View Article and Find Full Text PDFSynthetic lethality is emerging as an important cancer therapeutic paradigm, while the comprehensive selective treatment opportunities for various tumors have not yet been explored. We develop the Synthetic Lethality Knowledge Graph (SLKG), presenting the tumor therapy landscape of synthetic lethality (SL) and synthetic dosage lethality (SDL). SLKG integrates the large-scale entity of different tumors, drugs and drug targets by exploring a comprehensive set of SL and SDL pairs.
View Article and Find Full Text PDFTranscriptional activation of p21 (cyclin-dependent kinase inhibitor 1A) due to DNA damage often alters the distribution of histone variant H2A.Z at the p21 gene. However, whether the human INO80 complex regulates changes in H2A.
View Article and Find Full Text PDFThe human males absent on the first (MOF)-containing histone acetyltransferase nonspecific lethal (NSL) complex comprises nine subunits including the -linked -acetylglucosamine (-GlcNAc) transferase, isoform 1 (OGT1). However, whether the -GlcNAc transferase activity of OGT1 controls histone acetyltransferase activity of the NSL complex and whether OGT1 physically interacts with the other NSL complex subunits remain unclear. Here, we demonstrate that OGT1 regulates the activity of the NSL complex by mainly acetylating histone H4 Lys-16, Lys-5, and Lys-8 via -GlcNAcylation and stabilization of the NSL complex subunit NSL3.
View Article and Find Full Text PDF