Structured illumination-based super-resolution Förster resonance energy transfer microscopy (SISR-FRETM) has facilitated better observation of molecular behavior in living cells. However, SIM tends to produce artifacts in reconstruction, especially when the raw SIM inputs are of low signal-to-noise ratio (SNR) or out-of-focus, leading to erroneous signals in subsequent FRET. Current SIM quality evaluation metrics fail to utilize both SNR and out-of-focus features, making it challenging to classify unqualified raw data for FRET.
View Article and Find Full Text PDFJ Appl Clin Med Phys
December 2024
Purpose: The goal of this study is to assess the utility of Cherenkov imaging (CI) and scintillation imaging (SI) as high-resolution techniques to measure CyberKnife® beam shape quantitatively at the irradiation surface in quality assurance (QA).
Methods: The EMCCD camera captured scintillation and Cherenkov photons arising from 6 MV x-ray dose deposition produced by the CyberKnife® VSI System. Two imaging methods were done at source to surface distance of 800 cm with the same field size, ranging from 10 to 60 mm using fixed cones and iris collimators.
Acute kidney injury (AKI) is a serious disorder associated with significant morbidity and mortality. AKI and ischemia/reperfusion (hypoxia/reoxygenation, H/R) injury can be induced due to several reasons. Paeoniflorin (PF) is a traditional herbal medicine derived from Paeonia lactiflora Pall.
View Article and Find Full Text PDFBackground: Fluorofenidone (AKF-PD) is a novel pyridone agent and has potent anti-NLRP3 inflammasome and anti-fibrotic activities. However, the mechanisms underlying its pharmacological actions are not fully understood.
Methods: A renal fibrosis rat model was established by the unilateral ureteral obstruction (UUO) procedure and the rats were randomized and treated with, or without, AKF-PD for 3 and 7 days.
Background: Cherenkov imaging can be used to visualize the placement of the beam directly on the patient's surface tissue and evaluate the accuracy of treatment planning. However, Cherenkov emission intensity is lower than ambient light. At present, time gating is the only way to realize Cherenkov imaging with ambient light.
View Article and Find Full Text PDFSolution-process perovskite quantum dots (QDs) are promising materials to be utilized in photovoltaics and photonics with their superior optical properties. Advancements in top-down nanofabrication for perovskite are thus important for practical photonic and plasmonic devices. However, different from the chemically synthesized nano/micro-structures that show high quality and low surface roughness, the perovskite QD thin film prepared by spin-coating or the drop-casting process shows a large roughness and inhomogeneity.
View Article and Find Full Text PDFPerovskite materials prepared in the form of solution-processed nanocrystals and used in top-down fabrication techniques are very attractive to develop low-cost and high-quality integrated optoelectronic circuits. Particularly, integrated miniaturized coherent light sources that can be connected to light-guiding structures on a chip are highly desired. To control light propagating on a small footprint with low-loss optical modes, long-range surface plasmon polariton (LRSPP) waveguides are employed.
View Article and Find Full Text PDFExtensive studies on lead halide perovskites have shown that these materials are excellent candidates as gain mediums. Recently, many efforts have been made to incorporate perovskite lasers in integrated optical circuits. Possible solutions would be to utilize standard lithography with an etching/lift-off process or a direct laser etching technique.
View Article and Find Full Text PDF