Ultrathin two-dimensional (2D) metal-organic nanosheets (MONs) have attracted continued attention in the field of advanced functional materials. Their nanoscale thickness, high surface-to-volume ratio, and abundant accessible active sites, are superior advantages compared with their 3D bulk counterparts. Bioinspired molecular scalpel strategy is a promising method for the creation of 2D MONs, and may solve the current shortcomings of MONs synthesis.
View Article and Find Full Text PDFThe preparation of ultra-small and well-dispersed metal nanoparticles (NPs) is of great importance for promoting oxygen reduction. Here, a metal (Fe and Zn) NP (7 nm) based catalyst derived from a Zn-based metal-organic framework was obtained by a vapor adsorption strategy, demonstrating a high half-wave potential (0.868 V) and power density (196 mW cm).
View Article and Find Full Text PDFThe production of metal-organic framework (MOF) nanoplates with well-defined geometric morphology is remarkable for expanding their applications. Herein, the cobalt-based MOF nanoplates with hexagonal channels from a layer-pillared MOF are accomplished, via a molecular scalpel strategy, utilizing monodentate pyridine to replace the bidentate 4,4'-bipyridine. The morphology can be modified from nanorods to nanoplates with controllable thickness tuned by the amounts of pyridine.
View Article and Find Full Text PDFEfficient and strong non-precious metal catalysts are urgently needed for the oxygen reduction reaction (ORR). Here, a facile hydrothermal-pyrolysis process was implemented to engineer CoFe-MnO heterointerfaces encapsulated in N-doped carbon (CFM-NC) nanospheres with a metal-organic framework (MOF) as the precursor. Due to heterointerfaces and hierarchical porosity, CFM-NC-800 exhibited superior ORR activity (half-wave potential of 0.
View Article and Find Full Text PDFRapid and accurate determination of biomarkers of human poisoning in real urine is of great significance for the assessment of health status. Herein, a luminescent urea-functionalized metal-organic framework (MOF), {[Cd(L)(bpbix)]·(solv)} (1) (HL = 5,5'-(((naphthalene-1,5-diylbis(azanediyl))bis(carbonyl))bis(azanediyl))diisophthalic acid; bpbix = 4,4'-bis((1-imidazol-1-yl)methyl)biphenyl), has been successfully synthesized, and exhibits good stability in aqueous solutions in the normal urinary pH range and real urine. Complex 1 can serve as a dual-responsive luminescent biosensor for the detection of diphenyl phosphate (DPP) and hippuric acid (HA) as biomarkers of flame retardant triphenyl phosphate and toluene poisoning, and shows the advantages of high sensitivity, rapid response, good anti-interference capability, and reversibility.
View Article and Find Full Text PDFDurable and efficient electrocatalysts toward the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) are crucial to the development of sustainable energy conversion. In this article, we report a highly active bifunctional electrocatalyst derived from ZIF-8 through simple heat-treatment activation. The resultant catalyst is enriched with Rh nanoparticles in the carbon matrix, showing excellent ORR performance with a half-wave potential ( ) of 0.
View Article and Find Full Text PDFThe facile exfoliation of a two-dimensional metal-organic nanosheet of {[Co(HL)(HO)(Py)]·/HO·DMF} [; HL = 5-(1-pyrazol-4-yl)isophthalic acid and Py = pyridine] was achieved, via a molecular scalpel strategy, by weakening intermolecular forces between adjacent layers. The resulting (KB = Ketjen black) shows an increased oxygen evolution reaction (OER) performance with an overpotential of 370 mV at a current density of 10 mA cm and a Tafel slope of 58 mV dec. This work sheds light on the structure-morphology-reactivity relationship of such materials in OER.
View Article and Find Full Text PDFMetal-organic framework (MOF)-derived carbon composites with embedded metal alloy/metal oxides have attracted much attention due to their low-cost and excellent electrochemical reactivity. However, the drawback of this concept is the severe carbon evaporation during their synthesis, resulting in a reduction of active sites and catalytic durability. To solve this problem, this study proposes the possibility of using Ketjen black (KB) to replenish the carbon content.
View Article and Find Full Text PDF