Aims: High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism.
View Article and Find Full Text PDFThe advancement of unloading technology in combine harvesting is crucial for the intelligent development of agricultural machinery. Accurately measuring material pile height in transport vehicles is essential, as uneven accumulation can lead to spillage and voids, reducing loading efficiency. Relying solely on manual observation for measuring stack height can decrease harvesting efficiency and pose safety risks due to driver distraction.
View Article and Find Full Text PDFAir-dried beef, a traditional dry fermented meat product in China, whose quality is largely influenced by processing conditions. In this study, contact ultrasound (CU) and infrared radiation (IR) were employed to enhance hot air drying (HAD), with an investigation into the mechanisms underlying improvements in quality and flavor. Samples subjected to CU and IR treatments during HAD (CU-IRD) demonstrated superior color (L* = 42.
View Article and Find Full Text PDFDrying, as a critical step in the production of air-dried beef, has a direct impact on the quality of the final product. Innovatively, a composite system incorporating contact ultrasound (CU) and infrared radiation (IR) as auxiliary measures within a hot air drying (HAD) framework was built in this research, and the effects of these techniques on the drying kinetics, protein denaturation, and moisture transformation of air-dried beef were investigated. In comparison to HAD treatment, the integrated CU and IR (CU-IRD) system displayed marked enhancements in heat and moisture transport efficiency, thereby saving 36.
View Article and Find Full Text PDFContinuous silicon carbide fiber-reinforced silicon carbide ceramic matrix composites (SiC/SiC) are promising as thermal structural materials. In this work, the microstructure and static mechanical properties of 3D-SiC/SiC with PyC, SiC, and PyC/SiC and without an interface prepared via polymer infiltration and pyrolysis (PIP) were investigated systematically in this paper. The results show that the microstructure and static mechanical properties of SiC/SiC with an interphase layer were superior to the composites without an interlayer, and the interface debondings are existing in the composite without an interphase, resulting in a weak interface bonding.
View Article and Find Full Text PDF