As the entry sites of many pathogens such as human immunodeficiency virus (HIV), mucosal sites are defended by rapidly reacting resident memory T cells (TRM). TRMs represent a special subpopulation of memory T cells that persist long term in non-lymphoid sites without entering the circulation and provide the "sensing and alarming" role in the first-line defense against infection. The rectum and vagina are the two primary mucosal portals for HIV entry.
View Article and Find Full Text PDFGiven that continuing antigenic shift and drift of influenza A viruses result in the escape from previous vaccine-induced immune protection, a universal influenza vaccine has been actively sought. However, there were very few vaccines capable of eliciting cross-group ant-influenza immunity. Here, we designed two novel composite immunogens containing highly conserved T-cell epitopes of six influenza A virus internal antigens, and expressed them in DNA, recombinant adenovirus-based (AdC68) and recombinant vaccinia vectors, respectively, to formulate three vaccine forms.
View Article and Find Full Text PDFBackground: The outbreak of novel avian H7N9 influenza virus infections in China in 2013 has demonstrated the continuing threat posed by zoonotic pathogens. Deciphering the immune response during natural infection will guide future vaccine development.
Methods: We assessed the induction of heterosubtypic cross-reactive antibodies induced by H7N9 infection against a large panel of recombinant hemagglutinins and neuraminidases by quantitative enzyme-linked immunosorbent assay, and novel chimeric hemagglutinin constructs were used to dissect the anti-stalk or -head humoral immune response.