Publications by authors named "Xinchun Lai"

The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms.

View Article and Find Full Text PDF

For effective hydrogen generation with remarkable durability, carbon nanotubes (CNTs) grown on Ni nanofibers and their post hydroxylation treatment engendered active Ni nanofiber catalysts an efficient decomposition of hydrous hydrazine with a turnover frequency (TOF) of 19.4 h and an activation energy down to 51.05 KJ mol.

View Article and Find Full Text PDF

We have successfully synthesized single crystals of UAuSb using a flux method and present a comprehensive study of its physical properties by measuring the magnetic susceptibility, electrical resistivity and specific heat. Evidence for at least three magnetic phases is observed in the field-temperature phase diagram of UAuSb. In zero field, the system undergoes an antiferromagnetic transition at 71 K, and upon further cooling it passes through another antiferromagnetic phase with a ferromagnetic component, before reaching a ferromagnetic ground state.

View Article and Find Full Text PDF

The chemical doping is an effective strategy to improve the charge transport property of hole transport material (HTM). Herein, tris(2-(1H-pyrazol-1-yl)pyridine]cobalt(III) (FK102) doped 2,2,7,7-tetrakis(N, N-di-p-methoxyphenylamine)-9,9-spirobifluorene (spiro-MeOTAD) as HTM for semi-transparent cesium-containing planar perovskite solar cell (Cs0.1MA0.

View Article and Find Full Text PDF

Low-cost carbon materials (carbon black and graphite power) were applied as substitution of platinum (Pt) in counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). Three fabrication methods, such as ball-milled, pulp-refined, and ultrasonic-crushed, were applied to remove the particle aggregation in the carbon pastes. Then the carbon based pastes were printed on fluorine-doped transparent conducting oxide (FTO) glasses, used as the CEs for DSSCs.

View Article and Find Full Text PDF

Searching for heavy fermion (HF) states in non-f-electron systems becomes an interesting issue, especially in the presence of magnetism, and can help explain the physics of complex compounds. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy, physical properties measurements, and the first-principles calculations, we observe the HF state in a 3d-electron van der Waals ferromagnet, FeGeTe. Upon entering the ferromagnetic state, a massive spectral weight transfer occurs, which results from the exchange splitting.

View Article and Find Full Text PDF

The Kondo effect of single Co adatoms on Ru(0001) is detected with two different kinds of co-decorated tip (Kondo tip) by using low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. We call the relatively separated two magnetic impurities in the tunneling region 'two Kondo system' to distinguish it from the 'two-impurity Kondo system'. We find that the artificially constructed Kondo tips can be generally categorized into two types of Kondo resonances, which have distinct Fano line shapes with quantum interference factor |q| ≫ 1 and |q| ∼ 1, respectively.

View Article and Find Full Text PDF

We show the three-dimensional electronic structure of the Kondo lattice CeIn3 using soft x-ray angle resolved photoemission spectroscopy in the paramagnetic state. For the first time, we have directly observed the three-dimensional topology of the Fermi surface of CeIn3 by photoemission. The Fermi surface has a complicated hole pocket centred at the Γ-Z line and an elliptical electron pocket centred at the R point of the Brillouin zone.

View Article and Find Full Text PDF

The record superconducting transition temperature (T(c)) for the iron-based high-temperature superconductors (Fe-HTS) has long been 56 K. Recently, in single-layer FeSe films grown on SrTiO3 substrates, indications of a new record of 65 K have been reported. Using in situ photoemission measurements, we substantiate the presence of spin density waves (SDWs) in FeSe films--a key ingredient of Fe-HTS that was missed in FeSe before--and we find that this weakens with increased thickness or reduced strain.

View Article and Find Full Text PDF