In situ refractive index sensors integrated with nanoaperture-based optical tweezers possess stable and sensitive responsivity to single nanoparticles. In most existing works, detection events are only identified using the total light intensity with directivity information ignored, leading to a low signal-to-noise ratio. Here, we propose to detect an optically trapped 20 nm silica particle by monitoring directivity of a plasmonic antenna.
View Article and Find Full Text PDFNanotechnology
November 2021
Fiber optical tweezers benefit from compact structures and compatibility with fiber optic technology, however, trapping of nano-objects are rarely demonstrated. Here, we predict stable optical trapping of a 30 nm polystyrene particle using an all-dielectric coaxial optical fiber supporting an axisymmetric TEM-like mode. We demonstrate, via comprehensive finite-difference time-domain simulations, that the trapping behavior arises from a significant shift of the fiber-end-fire radiation directivity originated from the nanoparticle-induced symmetry breaking, rather than the gradient force which assumes an invariant optical field.
View Article and Find Full Text PDF