Lithium-sulfur batteries (LSB) with high theoretical energy density are plagued by the infamous shuttle effect of lithium polysulfide (LPS) and the sluggish sulfur reduction/evolution reaction. Extensive research is conducted on how to suppress shuttle effects, including physical structure confinement engineering, chemical adsorption strategy, and the design of sulfur redox catalysts. Recently, the rational design to mitigate shuttle effects and enhance reaction kinetics based on physical field effects has been widely studied, providing a more fundamental understanding of interactions with sulfur species.
View Article and Find Full Text PDFDendrite growth of lithium (Li) metal anodes is considered as one of the most tough issues for Li metal batteries with a theoretically high energy density. This is attributed to the rapid exhaustion of Li ions at the electrode/electrolyte interface, which is even worse at low temperatures with poor diffusion kinetics of Li ions. Here, pulse charge with intermittent rest time during battery charging is proposed to handle the dendrite growth issue of Li metal anodes at low temperatures.
View Article and Find Full Text PDFPulse forming lines (PFL) are widely applied in high-power pulsed power generators due to their high energy density and great ability with square waveform modulation. However, the three-cylinder coaxial Blumlein line (tPFL), a commonly used PFL structure, has low energy efficiency due to the difference in impedance of the outer and inner lines. In order to increase the outer line impedance and improve the output waveform of the PFL, a racetrack Blumlein pulse forming line (r-B PFL), formed by two inner cylinders, two middle cylinders, and one outer cylinder that resembles a runway shape, is proposed in this paper.
View Article and Find Full Text PDFPulsed power generators utilizing magnetic switch technology within the 100 ns scale have become widespread for surface treatment, high power microwave generation, and food processing, in which the dynamic characteristics of the magnetic switch perform an important function. The saturation process, electric field between layers, and energy loss are closely associated with the applied time scale of the magnetic core, which affects the dynamic characteristics of the switch. However, compared with the study within the microsecond scale, the dynamic characteristics of magnetic switches within the 100 ns scale have not been studied in depth.
View Article and Find Full Text PDFAnodes with high capacity and long lifespan play an important role in the advanced batteries. However, none of the existing anodes can meet these two requirements simultaneously. Lithium (Li)-graphite composite anode presents great potential in balancing these two requirements.
View Article and Find Full Text PDFIn this study, the authors provide results of the precisely synchronized triggering of an intense electron beam accelerator (IEBA). The trigger generator was composed of a fractional-turn ratio saturable-pulse transformer and a compact six-stage Marx generator. The main switch of the IEBA was a corona-stabilized triggered switch (CSTS) based on the stabilized corona mechanism.
View Article and Find Full Text PDFSevere dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.
View Article and Find Full Text PDFSluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed.
View Article and Find Full Text PDFWe report the first experimental demonstration of coherent combining of phase-steerable high power microwaves (HPMs) generated by X-band relativistic triaxial klystron amplifier modules under the guidance of pulsed magnetic fields. Electronically agile manipulation of the HPM phase is achieved with a mean discrepancy of 4° at the gain level of 110 dB, and the coherent combining efficiency has reached as high as 98.4%, leading to combined radiations with equivalent peak power of 4.
View Article and Find Full Text PDFExploring advanced strategies in alleviating the thermal runaway of lithium-metal batteries (LMBs) is critically essential. Herein, a novel electrolyte system with thermoresponsive characteristics is designed to largely enhance the thermal safety of 1.0 Ah LMBs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2022
Serious safety risks caused by the high reactivity of lithium metal against electrolytes severely hamper the practicability of lithium metal batteries. By introducing unique polymerization site and more fluoride substitution, we built an in situ formed polymer-rich solid electrolyte interphase upon lithium anode to improve battery safety. The fluorine-rich and hydrogen-free polymer exhibits high thermal stability, which effectively reduces the continuous exothermic reaction between electrolyte and anode/cathode.
View Article and Find Full Text PDFIn this paper, an all-solid-state high voltage trigger generator is developed, which is aimed at triggering a several gigawatts three-electrode spark gap of an intense electron beam accelerator (IEBA). As one of the most important parts for triggering the IEBA precisely, it is developed based on a fractional-turn ratio saturable pulse transformer and a compact six-stage Marx generator. A pulse of rising time 141 ns and amplitude 79.
View Article and Find Full Text PDFLow-temperature solid oxide fuel cells (LT-SOFCs) are a promising next-generation fuel cell due to their low cost and rapid start-up, posing a significant challenge to electrode materials with high electrocatalytic activity. Herein, we reported the bimetallic nanoparticles encapsulated in carbon nanotubes (NiFe@CNTs) prepared by carefully controlling catalytic pyrolysis of waste plastics. Results showed that plenty of multi-walled CNTs with outer diameters (14.
View Article and Find Full Text PDFOne of the important research directions in pulse power technology is to increase power density and operational stability of compact high-power pulse transformers. In this paper, the research object is a high-power pulse transformer using combined insulation, and the operating characteristics are obtained using simulation and experiment methods. The experimental results show that the maximum output voltage of the transformer increases by 30% in the combined insulation.
View Article and Find Full Text PDFA modularized generator with three long pulse modules is designed and constructed in this work. The long pulse module consists of a three-section anti-resonance network and a three-stage transmission line transformer. A single module can output a pulse with an amplitude of 33 kV and a full width at half maximum (FWHM) of 400 ns, when the primary energy storage system provides a voltage of 24 kV.
View Article and Find Full Text PDFAn all-solid-state microsecond pulsed power system has been tested in this paper. It can produce larger than 50 kV and microsecond-range pulses continuously for more than 9 × 10 shots into a resistive load at a repetition rate of 10 pps. The whole device has accumulatively operated more than 15 000 pulses at 100 Hz and 3 × 10 pulses at 10 Hz.
View Article and Find Full Text PDFThe saturable pulse transformer (SPT) and six stage LC-Marx generator are proposed in this solid-state system. In the experiments, the output voltage of 14.5 kV and the rise time of 720 ns are achieved when the isolation inductance is 35 µH and the primary capacitor is charged to 350 V.
View Article and Find Full Text PDFLithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition is an effective approach to avoid Li dendrite growth, but the mechanism of spherical deposition is unknown.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Lithium metal is among the most promising anode candidates of high-energy-density batteries. However, the formed dendrites result in low Coulombic efficiency and serious security issues. Designing lithiophilic sites is one of the effective strategies to control Li deposition.
View Article and Find Full Text PDFA sub-microsecond-range pulse generator based on an antiresonance network and transmission line transformer (TLT) is presented in this paper. The three-section antiresonance network (TSAN) and three-stage TLT take the roles of the pulse forming module and pulse voltage boosting module of this generator, respectively. The TSAN is applied to obtain a high quality and fixed flat top quasisquare pulse with fewer sections, and the three-stage TLT is used to obtain a higher voltage gain.
View Article and Find Full Text PDFLithium metal constitutes promising anode materials but suffers from dendrite growth. Lithiophilic host materials are highly considered for achieving uniform lithium deposition. Precise construction of lithiophilic sites with desired structure and homogeneous distribution significantly promotes the lithiophilicity of lithium hosts but remains a great challenge.
View Article and Find Full Text PDFLithium (Li) metal is regarded as a "Holy Grail" electrode for next-generation high-energy-density batteries. However, the electrochemical behavior of the Li anode under a practical working state is poorly understood, leading to a gap in the design strategy and the aim of efficient Li anodes. The electrochemical diagram to reveal failure mechanisms of ultrathin Li in pouch cells is demonstrated.
View Article and Find Full Text PDFThe stability of a battery is strongly dependent on the feature of solid electrolyte interphase (SEI). The electrical double layer forms prior to the formation of SEI at the interface between the Li metal anode and the electrolyte. The fundamental understanding on the regulation of the SEI structure and stability on Li surface through the structure of the electrical double layer is highly necessary for safe batteries.
View Article and Find Full Text PDFThe lithium (Li) metal anode is confronted by severe interfacial issues that strongly hinder its practical deployment. The unstable interfaces directly induce unfavorable low cycling efficiency, dendritic Li deposition, and even strong safety concerns. An advanced artificial protective layer with single-ion pathways holds great promise for enabling a spatially homogeneous ionic and electric field distribution over Li metal surface, therefore well protecting the Li metal anode during long-term working conditions.
View Article and Find Full Text PDF