Publications by authors named "Xinbao Ding"

Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) are the founder cells of the germline. The ability to generate PGC-like cells (PGCLCs) from pluripotent stem cells has advanced our knowledge of gametogenesis and holds promise for developing infertility treatments. However, generating an ample supply of PGCLCs for demanding applications such as high-throughput genetic screens has been a limitation.

View Article and Find Full Text PDF

Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling.

View Article and Find Full Text PDF

Assisted reproduction procedures often encounter an issue called oocyte maturation arrest (OMA), which is manifested as failed IVF/ICSI attempts using oocytes from some infertile women. In this issue of EMBO Molecular Medicine, Wang et al identify infertile women bearing novel DNA sequence variants in a gene called PABPC1L, which is essential for translation of maternal mRNAs. By conducting a series of in vitro and in vivo experiments, they demonstrated certain variants as being causal for OMA, confirming a conserved requirement for PABPC1L in human oocyte maturation.

View Article and Find Full Text PDF

Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive.

View Article and Find Full Text PDF

Introduction: Fate determination of germline stem cells remains poorly understood at the chromatin structure level.

Objectives: Our research hopes to develop successful offspring production of ovarian organoids derived from spermatogonial stem cells (SSCs) by defined factors.

Methods: The offspring production from oocytes transdifferentiated from mouse SSCs with tracking of transplanted SSCs in vivo, single cell whole exome sequencing, and in 3D cell culture reconstitution of the process of oogenesis derived from SSCs.

View Article and Find Full Text PDF

Genetic causes are thought to underlie about half of infertility cases, but understanding the genetic bases has been a major challenge. Modern genomics tools allow more sophisticated exploration of genetic causes of infertility through population, family-based, and individual studies. Nevertheless, potential therapies based on genetic diagnostics will be limited until there is certainty regarding the causality of genetic variants identified in an individual.

View Article and Find Full Text PDF

Approximately 7% of men worldwide suffer from infertility, with sperm abnormalities being the most common defect. Though genetic causes are thought to underlie a substantial fraction of idiopathic cases, the actual molecular bases are usually undetermined. Because the consequences of most genetic variants in populations are unknown, this complicates genetic diagnosis even after genome sequencing of patients.

View Article and Find Full Text PDF

Perfluorooctane acid (PFOA), a typical perfluorinated chemical, has been suggested to interfere with male reproductive function. In this study, mouse spermatogonial GC-1 cells were in vitro treated with PFOA (250, 500 or 750 μM) for 24 h to investigate the cytotoxicity of PFOA and its underlying mechanisms. Our results indicated that exposure to intermediate and high doses of PFOA suppressed the viability of GC-1 cells in a concentration-dependent manner.

View Article and Find Full Text PDF

Perfluorooctane acid (PFOA), a persistent organic pollutant, is ubiquitously present in the environment and may detrimentally affect male reproductive health. In this study, mature human sperm were in vitro exposed to different concentrations of PFOA (0.25, 2.

View Article and Find Full Text PDF

Human female germline stem cells (FGSCs) have opened new opportunities for understanding human oogenesis, delaying menopause, treating infertility, and providing a new strategy for preserving fertility. However, the shortage of adult human ovaries tissues available impedes their future investigations and clinical applications. Here, we have established FGSC lines from scarce ovarian cortical tissues that exist in follicular aspirates (faFGSCs), which are produced and discarded in in vitro fertilization centers worldwide.

View Article and Find Full Text PDF
Stem Cells in Mammalian Gonads.

Results Probl Cell Differ

January 2017

Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis.

View Article and Find Full Text PDF

Stem cells are unique cell types with the ability of self-renewal and differentiation, which mainly include embryonic stem cells, induced pluripotent stem cells, and adult stem cells. Recently, several research groups have reported that stem cells can differentiate into germ cells under appropriate conditions in vitro. Advances in this field have revealed new perspectives for reproductive and regenerative medicine.

View Article and Find Full Text PDF