Circumferential Shear Horizontal (CSH) guided waves provide an effective method for detecting defects like axial cracks and corrosion in pipes. Periodic Permanent Magnet Electromagnetic Acoustic Transducers (PPM EMATs) are typically used to generate CSH guided waves. However, there is an offset problem to which little attention has been paid.
View Article and Find Full Text PDFThree-dimensional (3D) perception of deep-sea targets is the key to autonomous operation of underwater equipment (e.g., underwater robots).
View Article and Find Full Text PDFGeometric parameter measurement of tubing internal thread is critical for oil pipeline safety. In response to the shortcomings of existing methods for measuring internal thread geometric parameters, such as low efficiency, poor accuracy, and poor accessibility, this paper proposes a vision system for measuring internal thread geometric parameters based on double-mirrored structured light. Compared to previous methods, our system can completely reproduce the internal thread tooth profiles and allows multi-parameter measurement in one setup.
View Article and Find Full Text PDFOilfield pipes with out-of-tolerance internal thread can lead to failures, so the internal thread geometric parameters need to be measured. To tackle the problem of the low efficiency, poor accuracy, easy wear, and poor accessibility of existing methods, a single-lens multi-mirror laser stereo vision-based system for measuring geometric parameters of the internal thread is proposed, which allows the measurement of three parameters in one setup by completely reproducing the three-dimensional (3D) tooth profiles of the internal thread. In the system design, to overcome the incomplete representation of imaging parameters caused by insufficient consideration of dimensions and structural parameters of the existing models, an explicit 3D optical path model without a reflecting prism is first proposed.
View Article and Find Full Text PDFThe feasibility and accuracy of four-mirror-based monocular stereo vision (FMSV) are related to the system layout and calibration accuracy, respectively. In this study, a spatial light path analysis method and a calibration method are proposed for an FMSV system. As two-dimensional light path analysis cannot fully characterize the imaging parameters, a spatial light path model is proposed, which allows refinement of the system design.
View Article and Find Full Text PDFLens distortion is closely related to the spatial position of depth of field (DoF), especially in close-range photography. The accurate characterization and precise calibration of DoF-dependent distortion are very important to improve the accuracy of close-range vision measurements. In this paper, to meet the need of short-distance and small-focal-length photography, a DoF-dependent and equal-partition based lens distortion modeling and calibration method is proposed.
View Article and Find Full Text PDFTo improve the resource utilization, reduce the pollution generation, and increase the economic benefits of enterprises, a cleaner process to produce cassava starch was proposed based on potato starch processing, and it was applied to the transformation of a traditional cassava starch processing factory in the Guangxi Province in China. The transformation involves the implementation of several new techniques/facilities, including a rasper, horizontal centrifuge, and hydrocyclone. Based on the transformation, typical cassava starch factories in Guangxi were evaluated.
View Article and Find Full Text PDFIt is still a big challenge to identify tiny surface cracks in a rugged weld due to the lift-off variations using the nondestructive testing (NDT) method. In this paper, the signal gradient algorithm is presented to identify the tiny surface crack in the rugged weld using the alternating current field measurement (ACFM) technique. The ACFM simulation model and testing system was set up to obtain the insensitive signal to the lift-off variations.
View Article and Find Full Text PDF