Bacterial infections have been a major threat to human health. Especially, Gram-negative (G) bacterial infections have been an increasing problem worldwide. The overuse of antibiotics leads to an emergence of drug resistance, and thus the development of novel antimicrobial agents is important, particularly against G bacteria.
View Article and Find Full Text PDFNanozymes' activities could be regulated by a simple and effective pH change in an in situ manner. In this work, for the first time, the peroxidase-like activity of Ni/Co layered double hydroxides (LDHs) was regulated via the alkaline-promoted reaction of fluorogenic substrate homovanillic acid and HO, and a promising tool for pH sensing was developed over the pH range of 8.3-9.
View Article and Find Full Text PDFNanomaterial-based peroxidase-mimetics are an emerging research field that promises to produce alternatives to horseradish peroxidase for a variety of applications. Generally, some peroxidase-mimetics substrates are used in acidic condition (pH ≤ 7). Then, it is necessary to screen some peroxidase-mimetics substrates suitable for basic condition because that some peroxidase-mimetics leached ions in acidic solution.
View Article and Find Full Text PDFIn the present study, a simple strategy was developed for Ni/Co layered double hydroxides (LDHs) as a substitute for natural peroxidase. The obtained Ni/Co LDHs exhibited ease of preparation, low-cost, and water-solubility; importantly, this material showed high catalytic activity in neutral pH solutions (phosphate buffer, Tris-HCl buffer, and even water). Benefitting from Ni/Co LDHs having a similar pH and temperature with specificity oxidase, such as glucose oxidase, choline oxidase, acetylcholinesterase, etc.
View Article and Find Full Text PDF