We previously proposed that LYR motif containing 1 (LYRM1)-induced mitochondrial reactive oxygen species (ROS) production contributes to obesity-related insulin resistance. Metformin inhibits ROS production and promotes mitochondrial biogenesis in specific tissues. We assessed the effects of metformin on insulin resistance in LYRM1-over-expressing 3T3-L1 adipocytes.
View Article and Find Full Text PDFLYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes.
View Article and Find Full Text PDFIn mammals, interferon-γ-inducible-lysosomal thiol reductase (GILT) has been demonstrated to play a key role in the processing and presentation of MHC class II-restricted antigen (Ag) by catalyzing disulfide bond reduction, thus unfolding native protein Ag and facilitating subsequent cleavage by proteases. Here, we reported the cloning of a GILT gene homologue from zebrafish (zGILT), a tropical freshwater fish. The full-length cDNA of zGILT gene is 768 nucleotides (nt) encoding a protein of 255 amino acids (aa), with a putative molecular weight of 28.
View Article and Find Full Text PDFJ Bioenerg Biomembr
December 2012
NYGGF4 (also called PID1) is a recently discovered gene that is involved in obesity-related insulin resistance (IR). We aimed in the present study to further elucidate the effects of NYGGF4 on IR and the underlying mechanisms through using metformin treatment in 3T3-L1 adipocytes. Our data showed that the metformin pretreatment strikingly enhanced insulin-stimulated glucose uptake through increasing GLUT4 translocation to the PM in NYGGF4 overexpression adipocytes.
View Article and Find Full Text PDFOverexpression of the Homo sapiens LYR motif containing 1 (LYRM1) causes mitochondrial dysfunction and induces insulin resistance in 3T3-L1 adipocytes. α-Lipoic acid (α-LA), a dithiol compound with antioxidant properties, improves glucose transport and utilization in 3T3-L1 adipocytes. The aim of this study was to investigate the direct effects of α-LA on reactive oxygen species (ROS) production and insulin sensitivity in LYRM1 overexpressing 3T3-L1 adipocytes and to explore the underlying mechanism.
View Article and Find Full Text PDFNYGGF4 (also called PID1) was demonstrated that it may be related to the development of obesity-related IR. We aimed in the present study to further elucidate the effects of NYGGF4 on IR and the underlying mechanisms through using α-Lipoic acid (LA) treatment, which could facilitate glucose transport and utilization in fully differentiated adipocytes. Our data showed that the LA pretreatment strikingly enhanced insulin-stimulated glucose uptake through increasing GLUT4 translocation to the PM in NYGGF4 overexpression adipocytes.
View Article and Find Full Text PDFJ Bioenerg Biomembr
February 2012
To explore the effects of Lyrm1 knockdown on the mitochondrial function of 3 T3-L1 adipocytes using small interfering RNA (siRNA). 3 T3-L1 preadipocytes were infected with either a negative control (NC) expression lentivirus or a Lyrm1-shRNA expression lentivirus and induced to differentiate. The knockdown efficiency of Lrym1-specific shRNA in 3 T3-L1 cells was evaluated by real-time PCR.
View Article and Find Full Text PDFLYR motif containing 1 (LYRM1) is a novel gene that is abundantly expressed in the adipose tissue of obese subjects and is involved in insulin resistance. In this study, free fatty acids (FFAs) and tumor necrosis factor-α (TNF-α) are shown to upregulate LYRM1 mRNA expression in 3T3-L1 adipocytes. Conversely, resistin and rosiglitazone exert an inhibitory effect on LYRM1 mRNA expression.
View Article and Find Full Text PDFMol Genet Metab
December 2010
Homo sapiens LYR motif containing 1 (LYRM1) is a recently discovered gene involved in adipose tissue homeostasis and obesity-associated insulin resistance. The exact mechanism by which LYRM1 induces insulin resistance has not yet been fully elucidated. In this study, we demonstrated that the overexpression of LYRM1 in 3T3-L1 adipocytes resulted in reduced insulin-stimulated glucose uptake, an abnormal mitochondrial morphology, and a decrease in intracellular ATP synthesis and mitochondrial membrane potential.
View Article and Find Full Text PDFZhong Xi Yi Jie He Xue Bao
June 2009
Objective: To explore the function of Bushen Kangshuai Tang (BKT), a compound traditional Chinese herbal medicine, in alleviating oxidative stress-induced reproductive defects in organism nematode Caenorhabditis elegans.
Methods: The L4-larvae were cultured with 25%, 50%, 75%, and 100% of BKT with the final concentration of 0.33 g/mL.