Publications by authors named "Xin-Rui Mao"

Organic hierarchical branch micro/nanostructures constituted by single crystals with inherent multichannel characteristics exhibit superior potential in regulating photon transmission for photonic circuits. However, organic branch micro/nanostructures with precise branch positions are extremely difficult to achieve due to the randomness of the nucleation process. Herein, by taking advantage of the dislocation stress field-impurity interaction that solute molecules deposit preferentially along the dislocation line, twinning deformation was introduced into microcrystals to induce oriented nucleation sites, and ultimately organic branch microstructures with controllable branch sites were fabricated.

View Article and Find Full Text PDF

The field of supramolecular metal-organic cage catalysis has grown rapidly in recent years. However, theoretical studies regarding the reaction mechanism and reactivity and selectivity controlling factors for supramolecular catalysis are still underdeveloped. Herein, we demonstrate a detailed density functional theory study on the mechanism, catalytic efficiency, and regioselectivity of the Diels-Alder reaction in bulk solution and within two [PdL] supramolecular cages.

View Article and Find Full Text PDF

Here, we report the first example of Ni-catalyzed asymmetric hydrosilylation of 1,1-disubstituted allenes with high level of regioselectivities and enantioselectivities. The key to achieve this stereoselective hydrosilylation reaction was the development of the SPSiOL-derived bisphosphite ligands (SPSiPO). This protocol features broad substrate scope, excellent functional group, and heterocycle tolerance, thus provides a versatile method for the construction of enantioenriched tertiary allylsilanes in a straightforward and atom-economic manner.

View Article and Find Full Text PDF

Conventional laser cavities require discontinuity of material property or disorder to localize a light field for feedback. Recently, an emerging class of materials, twisted van der Waals materials, have been explored for applications in electronics and photonics. Here we propose and develop magic-angle lasers, where the localization is realized in periodic twisted photonic graphene superlattices.

View Article and Find Full Text PDF

Spin-momentum locking is a direct consequence of bulk topological order and provides a basic concept to control a carrier's spin and charge flow for new exotic phenomena in condensed matter physics. However, up to date the research on spin-momentum locking solely focuses on its in-plane transport properties. Here, we report an emerging out-of-plane radiation feature of spin-momentum locking in a non-Hermitian topological photonic system and demonstrate a high performance topological vortex laser based on it.

View Article and Find Full Text PDF

Topological insulators are materials that behave as insulators in the bulk and as conductors at the edge or surface due to the particular configuration of their bulk band dispersion. However, up to date possible practical applications of this band topology on materials' bulk properties have remained abstract. Here, we propose and experimentally demonstrate a topological bulk laser.

View Article and Find Full Text PDF