Publications by authors named "Xin-Ping Ai"

Aqueous rechargeable sodium-ion batteries have the potential to meet growing demand for grid-scale electric energy storage because of the widespread availability and low cost of sodium resources. In this study, we synthesized a Na-rich copper hexacyanoferrate(II) Na2 CuFe(CN)6 as a high potential cathode and used NaTi2 (PO4 )3 as a Na-deficient anode to assemble an aqueous sodium ion battery. This battery works very well with a high average discharge voltage of 1.

View Article and Find Full Text PDF

Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion.

View Article and Find Full Text PDF

The effects of different metal cations on the fluorescence of water-soluble conjugated polymer (CP) and their quenching mechanism have been explored. Most transition metal cations, especially noble metal cations, such as Pd2+, Ru3+, and Pt2+ possessed higher quenching efficiency to CP fluorescence than that of the main group metal cations and other transition metal cations, which have filled or half-full outmost electron layer configurations. Base on this, rapid, sensitive detection of noble metal cations can be realized and a novel quencher-tether-ligand (QTL) probe was developed to detect avidin and streptavidin.

View Article and Find Full Text PDF

The interaction of some diamines (ethylenediamine (EDA), 1,6-hexanediamine (HDA), o-phenylenediamine (OPD)) with CdSe quantum dots (QDs) is reported. With increasing concentration of EDA from 0 to 2.0 x 10(-6) mol l(-1), slight fluorescence enhancement is observed.

View Article and Find Full Text PDF

CdSe quantum dots (QDs) have been prepared and modified with mercaptoacetic acid. They are water-soluble and biocompatible. To improve their fluorescence intensity and stability in water solution, bovine serum albumin (BSA) was absorbed onto their surface.

View Article and Find Full Text PDF