Publications by authors named "Xin-Ge Zhang"

Transmissive metasurfaces are essentially conducive to stealth, absorbers, and communications. However, most of the current schemes only allow microwave to transmit and generally adopt multilayer structures or thick dielectric substrates to improve the electromagnetic performance, restricting optical transmission and conformal application. In addition, most metasurfaces still require metal wires and external power suppliers for programmability.

View Article and Find Full Text PDF
Article Synopsis
  • The liver can tell when the body has enough nutrients and sends messages to other parts to help balance everything!
  • When someone eats a ketogenic diet, the liver releases a signal called β-hydroxybutyrate (BHB) to help manage fat storage in a specific type of fat tissue!
  • If the liver can't produce BHB, the fat tissue starts storing more fat, but the liver isn't helped in reducing its own fat accumulation!
View Article and Find Full Text PDF

Disulfiram (DSF) has been used as a hangover drug for more than seven decades and was found to have potential in cancer treatment, especially mediated by copper. However, the uncoordinated delivery of disulfiram with copper and the instability of disulfiram limit its further applications. Herein, we synthesize a DSF prodrug using a simple strategy that could be activated in a specific tumor microenvironment.

View Article and Find Full Text PDF

Photon-electron interactions are essential for many areas such as energy conversion, signal processing, and emerging quantum science. However, the current demonstrations are typically targeted to fiber and on-chip applications and lack of study in wave space. Here, we introduce a concept of optoelectronic metasurface that is capable of realizing direct and efficient optical-microwave interactions in free space.

View Article and Find Full Text PDF

Signal conversion plays an important role in many applications such as communication, sensing, and imaging. Realizing signal conversion between optical and microwave frequencies is a crucial step to construct hybrid communication systems that combine both optical and microwave wireless technologies to achieve better features, which are highly desirable in the future wireless communications. However, such a signal conversion process typically requires a complicated relay to perform multiple operations, which will consume additional hardware/time/energy resources.

View Article and Find Full Text PDF

Programmable metasurfaces allow real-time electromagnetic (EM) manipulation in a digital manner, showing great potential to construct advanced multifunctional EM devices. However, the current programmable metasurfaces typically need human participation to achieve various EM functions. In this Letter, we propose, design, and construct a self-adaptive metasurface platform that can achieve beam control automatically based on image recognition.

View Article and Find Full Text PDF

Invisibility cloaks, a class of attractive devices that can hide objects from external observers, have become practical reality owing to the advent of metamaterials. In previous cloaking schemes, almost all demonstrated cloaks are time-invariant and are investigated in the system that is motionless, and hence they are limited to hide stationary objects. In addition, the current cloaks are typically static or require manual operation to achieve dynamic cloaking.

View Article and Find Full Text PDF

Programmable metasurfaces allow dynamic and real-time control of electromagnetic (EM) waves in subwavelength resolution, holding extraordinary potentials to establish meta-systems. Achieving independent and real-time controls of orthogonally-polarized EM waves via the programmable metasurface is attractive for many applications, but remains considerably challenging. Here, a polarization-controlled dual-programmable metasurface (PDPM) with modular control circuits is proposed, which enables a dibit encoding capability in modifying the phase profiles of - and -polarized waves individually.

View Article and Find Full Text PDF

Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be changed quickly without redesigning their structures. However, large numbers of long-distance wires are required to connect the programmable metasurface to provide the coded signals from field programmable gate array (FPGA) when controlling the metasurface at a long distance, which is complicated and inconvenient.

View Article and Find Full Text PDF

Beam diversity enables antenna arrays to play important roles in radar, communications, imaging, and next-generation wireless systems. However, achieving flexible control of beams in a low-cost way is still very challenging. Here, we propose low-profile planar antenna arrays with coding elements to control and engineer radiation patterns more freely and flexibly.

View Article and Find Full Text PDF

Since the advent of digital coding metamaterials, a new paradigm is unfolded to sample, compute and program electromagnetic waves in real time with one physical configuration. However, one inconvenient truth is that actively tunable building blocks such as diodes, varactors, and biased lines must be individually controlled by a computer-assisted field programmable gate array and physically connected by electrical wires to the power suppliers. This issue becomes more formidable when more elements are needed for more advanced and multitasked metadevices and metasystems.

View Article and Find Full Text PDF