Adv Drug Deliv Rev
October 2023
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs.
View Article and Find Full Text PDFPsoriasis is a chronic, immune-mediated disorder characterized by immune regulation disorders and abnormal keratinocyte proliferation. Deucravacitinib (Deu), a selective oral Tyrosine Kinase 2 (TYK2) inhibitor, shows promise in treating psoriasis but may cause systemic side effects and fail to address persistent localized thickened lesions. Herein, a self-locking microneedle (MN) patch with a polyvinyl alcohol (PVA) inner ring loaded with Deu is developed, designed to penetrate the transdermal barriers and dissolve rapidly, downregulating the IL-23/IL-17 pathway and serve as the first line of defense against the spread of skin-originated inflammation.
View Article and Find Full Text PDFHyperlipidemia has been a huge challenge to global health, leading to the cardiovascular disease, hypertension, and diabetes. Atorvastatin calcium (AC), a widely prescribed drug for hyperlipidemia, faces huge challenges with oral administration due to poor water solubility and hepatic first-pass effects, resulting in low therapeutic efficacy. In this work, we designed and developed a hybrid microneedle (MN) patch system constructed with soluble poly(vinyl alcohol) (PVA) and AC-loaded polymeric micelles (AC@PMs) for transdermal delivery of AC to enhance the hyperlipidemia therapy.
View Article and Find Full Text PDFBlock polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations.
View Article and Find Full Text PDFThe incidence and mortality rates of skin melanoma have been increasing annually. Photodynamic therapy (PDT) enables effective destruction of tumor cells while minimizing harm to normal cells. However, traditional photosensitizers (PSs) suffer from photobleaching, photodegradation and the aggregation-caused quenching (ACQ) effect, and it is challenging for light to reach the deep layers of the skin to maximize the efficacy of PSs.
View Article and Find Full Text PDFDrug Deliv Transl Res
July 2024
Analgesic creams find widespread application as adjuncts for localized anesthesia prior to surgical procedures. Nevertheless, the onset of analgesic action is protracted due to the skin barrier's inherent characteristics, which necessitates prolonged intervals of patient and clinician waiting, consequently impinging upon patient compliance and clinician workflow efficiency. In this work, a biodegradable microneedles (MNs) patch was introduced to enhance the intradermal administration of lidocaine cream to achieve rapid analgesia through a minimally invasive and conveniently accessible modality.
View Article and Find Full Text PDFInsulin aspart (IAsp) and insulin degludec (IDeg), as the third generation of insulin, have a faster onset time or a more durable action period, which may simulate the secretion of insulin under physiological conditions. Microneedles (MNs) are transdermal delivery devices that may allow diabetic patients to easily deploy transdermal insulin therapy while considerably reducing injection pain. In this study, we investigated the combination of dissolving MNs with IAsp or IDeg therapy as an alternative to daily multiple insulin injections, aiming to improve glycemic control and patient compliance.
View Article and Find Full Text PDFMelanoma is resistant to conventional chemotherapy and radiotherapy. Therefore, it is essential to develop a targeted, low-toxic, and minimally invasive treatment. Here, DTIC/ICG-FeO@TpBD BSP/HA microneedles (MNs) were designed and fabricated, which can enhance targeting to melanoma and perform photothermal therapy (PTT) and chemotherapy simultaneously to synergistically exert anticancer effects.
View Article and Find Full Text PDFWound management is a serious concern worldwide, inflicting a huge social and economic burden on patients and healthcare systems, and research into efficient wound-management measures is crucial. Although advances have been made in traditional wound dressings for wound management to date, the complicated environment near the wound leads to inadequate drug absorption for achieving the intended therapeutic impact. Microneedles, a novel transdermal drug delivery method, can improve wound-healing efficacy by breaking down the barriers at the wound site and enhancing drug delivery efficiency.
View Article and Find Full Text PDFMater Today Bio
April 2023
Intravenously administered nanocarriers suffer from off-target distribution, pre-targeting drug leakage, and rapid clearance, limiting their efficiency in tumor eradication. To bypass these challenges, an injectable hydrogel with time- and temperature-dependent viscosity enhancement behavior and self-healing property are reported to assist in the retention of the hydrogel in the tumor site after injection. The cancer cell membrane (CCM) and sorafenib are embedded into the hydrogel to elicit local tumor-specific immune responses and induce cancer cell apoptosis, respectively.
View Article and Find Full Text PDFMelasma is a common hyperpigmented skin condition that occurs on the face and other areas prone to light exposure, seriously affecting people's quality of life. Microneedle, a new type of transdermal drug delivery device, can significantly improve skin permeability. In this study, we designed and fabricated a polymer microneedle roller (PMR) using a mold hot pressing method, and established a mouse model of melasma induced by ultraviolet radiation.
View Article and Find Full Text PDFTo alleviate the dilemma of drug administration in Alzheimer's disease (AD) patients, it is of great significance to develop a new drug delivery system. In this study, a subcutaneously implanted microneedle (MN) device with a swellable gelatin methacryloyl (GelMA) needle body and a dissolvable polyvinyl alcohol (PVA) backing layer was designed. The backing layer quickly dissolved once the MN was introduced into the subcutaneous, and the hydrogel needles were implanted in the subcutaneous to enable prolonged drug release.
View Article and Find Full Text PDFEpidermal growth factor is an excellent drug for promoting wound healing; however, its conventional administration strategies are associated with pharmacodynamic challenges, such as low transdermal permeability, reduction, and receptor desensitization. Here, we develop a microneedle-based self-powered transcutaneous electrical stimulation system (mn-STESS) by integrating a sliding free-standing triboelectric nanogenerator with a microneedle patch to achieve improved epidermal growth factor pharmacodynamics. We show that the mn-STESS facilitates drug penetration and utilization by using microneedles to pierce the stratum corneum.
View Article and Find Full Text PDFLeukocytes play a vital role in immune responses, including defending against invasive pathogens, reconstructing impaired tissue, and maintaining immune homeostasis. When the immune system is activated in vivo, leukocytes accomplish a series of orderly and complex regulatory processes. While cancer and inflammation-related diseases like sepsis are critical medical difficulties plaguing humankind around the world, leukocytes have been shown to largely gather at the focal site, and significantly contribute to inflammation and cancer progression.
View Article and Find Full Text PDFThe stability of drug-loaded nanoparticles in vivo is related to the success of the drug delivery, which is investigated as a deficiency due to the limitation of traditional experimental methods. In this study, dissipative particle dynamics (DPD), a simulation method suitable for soft matter and fluids, was used to study the stability of amphiphilic nanoparticles in the blood microenvironment. By comparing the morphology alteration of nanoparticles with various molecular topologies in the shear fluid field, we have found that branch degree and geometric symmetry would be the key factors in maintaining the nanoparticle's stability.
View Article and Find Full Text PDFBy using the prominent merit of poly(N-isopropylacrylamide) (PNIPAm) that can reversibly switch from a linear state to a coiled state with the change in temperature, in this work, gelatin was grafted with carboxylic end-capped PNIPAm as the matrix material to fabricate a physical entanglement crosslinked hydrogel microneedles (MNs) patch that can control drug release after application on the skin. The crystallization of the drug during the fabrication process of MNs was decreased due to the thermo-reversible sol-gel transition of the matrix materials. In addition, to increase the mechanical strength of the MNs and to decrease the application time, the gelatin-g-PNIPAm (GP) MNs patch was mounted onto solid MNs to fabricate a rapidly separating MNs system (RS-GP-MNs).
View Article and Find Full Text PDFMicroneedles (MNs) have been developed for various applications such as drug delivery, cosmetics, diagnosis, and biosensing. To meet the requirements of MNs used in these areas, numerous materials have been used for the fabrication of MNs. However, MNs will be exposed to skin tissues after piercing the stratum corneum barrier.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a chronic inflammatory skin disease that seriously affects the life quality of patients. Topical administration of glucocorticoids is considered to be the most effective anti-inflammatory treatment. However, due to the barrier function of skin, only less than 20% of topical drug molecules could diffuse into the skin.
View Article and Find Full Text PDFWith the growing technological innovations in medical treatments, cell-based therapies hold great potential as efficient tools against various previously incurable diseases by restoring or altering the function of certain sets of cells. Along this line, an essential factor to determine the success of cell therapy is the choice of cell delivery strategy. In recent years, a novel trend is blooming in the application of microneedle systems, which are based on the miniaturization of multiple needles within a patch to the micrometer dimensions, aimed at the delivery of therapeutic cells to the target site with high efficiency and in a minimally invasive manner.
View Article and Find Full Text PDFConsidering the staggering global prevalence of local pain affecting hundreds of million individuals, it is of great significance to develop advanced dosage forms or delivery systems for analgesic therapy to fulfill clinical applicability. In this study, a hydrogel microneedles (MNs) system made out of gelatin-methacryloyl (GelMA) was designed to deliver lidocaine hydrochloride (LiH) in a sustained manner, and the drug loading capacity of the GelMA MNs was increased considerably by using the backing layer reservoir. The in vitro and in vivo tests showed that the fabricated GelMA MNs are strong enough for reliable skin application, and achieve high drug delivery efficiency as compared with the commercial lidocaine patches.
View Article and Find Full Text PDFOver the years, scientists have been focused on the development of microneedle coating process to coat a broad range of therapeutic agents onto the surface of the solid microneedles for effective drug delivery. The precise dose control, content uniformity as well as large-scale production of coated microneedles are still the core issues that have been the interest of researchers in this topic. To this end, a repeatable method that involved a micro-molding process was demonstrated for mass fabrication of coated microneedles with homogeneous and controllable drug loading under mild conditions.
View Article and Find Full Text PDFDiabetes is one of the most serious chronic diseases today. Patients with diabetes need frequent insulin injections or blood sampling to monitor blood glucose levels. The microneedles are a painless transdermal drug delivery system, which has great advantages in achieving self-management.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2022
Dissipative Particle Dynamics (DPD) is a mesoscopic simulation program used to simulate the behavior of complex fluids. This work systematically reviews the use of DPD to simulate the self-assembly process of pH-sensitive drug-loaded nanoparticles. pH-sensitive drug-loaded nanoparticles have the characteristics of good targeting and slow release in the body, which is an ideal method for treating cancer and other diseases.
View Article and Find Full Text PDFDrug Deliv Transl Res
February 2022
Dissolving microneedle patch (DMNP) is a minimally invasive and painless self-administration device. However, due to skin deformation, it is difficult to apply it on the large areas of skin or curved skin as the patch size increased for DMNP. Here, we propose a polyvinyl alcohol (PVA)-based dissolving microneedle roller (DMNR) device that can be used for delivering drugs rapidly on the large surface areas or curved skin and does not need to be attached on the skin all the time during drug delivery.
View Article and Find Full Text PDFThe drug diffusion issue in microneedles is the focus of its medical application. It will not only affect the distribution of drugs in the needle body but will also have an impact on the drug release performance of the microneedle. The utilization of cross-linked polymer materials to obtain the drug diffusion control has been experimentally verified as a feasible method.
View Article and Find Full Text PDF