Publications by authors named "Xin Zheng Li"

A new species belonging to the genus Porirualia Huys & Mu, 2021 was identified and described here based on samples collected from No. 1 Bathing Beach, Qingdao, China. The new species differs from Porirualia pyriformis mainly in the following characteristics: P3 and P4 exp-3 with three inner setae (two inner setae in P.

View Article and Find Full Text PDF

Species distribution models (SDMs) are valuable tools in predicting species distribution ranges and the suitable habitats, which are based on environmental conditions and species distribution data. These models encompass correlative models, mechanistic models, and mechanistic-correlative models. In the field of marine science, SDMs have been extensively used for predicting the spatial distribution patterns of various marine organisms including fish, mammals, algae, .

View Article and Find Full Text PDF

Exciton-phonon coupling (ExPC) is crucial for energy relaxation in semiconductors, yet the first-principles calculation of such coupling remains challenging, especially for two-dimensional (2D) systems. Here, an accurate method for calculating ExPC is developed and applied in exciton relaxation problems in monolayer WSe. Considering the interplay between the exciton wave functions and electron-phonon coupling (EPC) matrix elements, we find that ExPC shows selection rules distinct from the ones of EPC.

View Article and Find Full Text PDF

The supercritical region is often described as uniform with no definite transitions. The distinct behaviors of the matter therein, e.g.

View Article and Find Full Text PDF

The exploration of solid-solid phase transition suffers from the uncertainty of how atoms in two crystal structures match. We devised a theoretical framework to describe and classify crystal-structure matches (CSM). Such description fully exploits the translational and rotational symmetries and is independent of the choice of supercells.

View Article and Find Full Text PDF

The atomic-thick anticorrosion coating for copper (Cu) electrodes is essential for the miniaturisation in the semiconductor industry. Graphene has long been expected to be the ultimate anticorrosion material, however, its real anticorrosion performance is still under great controversy. Specifically, strong electronic couplings can limit the interfacial diffusion of corrosive molecules, whereas they can also promote the surficial galvanic corrosion.

View Article and Find Full Text PDF

Pumpkin ( Duch.) productivity is severely hindered by powdery mildew (PM) worldwide. The causative agent of pumpkin PM is , a biotrophic fungus.

View Article and Find Full Text PDF

Transferred graphene provides a promising III-nitride semiconductor epitaxial platform for fabricating multifunctional devices beyond the limitation of conventional substrates. Despite its tremendous fundamental and technological importance, it remains an open question on which kind of epitaxy is preferred for single-crystal III-nitrides. Popular answers to this include the remote epitaxy where the III-nitride/graphene interface is coupled by nonchemical bonds, and the quasi-van der Waals epitaxy (quasi-vdWe) where the interface is mainly coupled by covalent bonds.

View Article and Find Full Text PDF

Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m h with a favourable NaCl rejection exceeding 99%.

View Article and Find Full Text PDF

The integration and miniaturization of contemporary electronics have led to significant challenges in dealing with electromagnetic (EM) radiation and heat accumulation. Despite these issues, achieving high thermal conductivity (TC) and electromagnetic interference (EMI) shielding effectiveness (SE) in polymer composite films remains an exceptionally difficult task. In this work, we used a straightforward in situ reduction process and a vacuum-drying method to successfully prepare a flexible Ag NPs/chitosan (CS)/PVA nanocomposite with three-dimensional (3D) conductive and thermally conductive network architectures.

View Article and Find Full Text PDF

Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades.

View Article and Find Full Text PDF

Isotopic mixtures result in distinct properties of materials such as thermal conductivity and nuclear process. However, the knowledge of isotopic interface remains largely unexplored mainly due to the challenges in atomic-scale isotopic identification. Here, using electron energy-loss spectroscopy in a scanning transmission electron microscope, we reveal momentum-transfer-dependent phonon behavior at the h-BN/h-BN isotope heterostructure with sub-unit-cell resolution.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs), with ordered pores and well-defined topology, are ideal materials for nanofiltration (NF) membranes because of their capacity of transcending the permeance/selectivity trade-off predicament. However, most reported COF-based membranes are focused on separating molecules with different sizes, resulting in low selectivity to similar molecules with different charges. Here, the negatively charged COF layer was fabricated in situ on a microporous support for the separation of molecules with different sizes and charges.

View Article and Find Full Text PDF

We applied the harmonic inversion technique to extract vibrational eigenvalues from the semiclassical initial value representation (SC-IVR) propagator of molecular systems described by explicit potential surfaces. The cross-correlation filter-diagonalization (CCFD) method is used for the inversion problem instead of the Fourier transformation, which allows much shorter propagation time and is thus capable of avoiding numerical divergence issues while getting rid of approximations like the separable one to the pre-exponential factor. We also used the "Divide-and-Conquer" technique to control the total dimensions under consideration, which helps to further enhance the numerical behavior of SC-IVR calculations and the stability of harmonic inversion methods.

View Article and Find Full Text PDF

Using a full-dimensional quantum method for nuclei and a new first-principles water potential, we show that the torsional tunneling splitting in a water trimer can be reproduced with accuracy up to ∼1 cm. We quantify the coupling constants of the nuclear quantum states between nonadjacent wells and show that they are the main reason for shifting the quartet-split levels in spectra from a 1:2:1 spacing. This demonstrates the limitation of treatments using simplified models such as the Hückel model and emphasizes the nonlocal nature of the quantum interactions in this system.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed carbon nanotubes combined with cobalt (Co) nanoparticles, exploring their effects on ORR activity and reactivity through various treatments.
  • * The new catalyst shows impressive selectivity and ORR performance, capable of generating hydrogen peroxide (HO) at a rate of 323 mg L/h under neutral conditions without needing additional oxygen.
View Article and Find Full Text PDF

The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects.

View Article and Find Full Text PDF

Understanding how the nuclear quantum effects (NQEs) in the hydrogen bond (H-bond) network influence the photoexcited charge transfer at semiconductor/molecule interface is a challenging problem. By combining two kinds of emerging molecular dynamics methods at the ab initio level, the path integral-based molecular dynamics and time-dependent nonadiabatic molecular dynamics, and choosing CHOH/TiO as a prototypical system to study, we find that the quantum proton motion in the H-bond network is strongly coupled with the ultrafast photoexcited charge dynamics at the interface. The hole trapping ability of the adsorbed methanol molecule is notably enhanced by the NQEs, and thus, it behaves as a hole scavenger on titanium dioxide.

View Article and Find Full Text PDF

Isotope substitution is an important experimental technique that offers deep insight into reaction mechanisms, as the measured kinetic isotope effects (KIEs) can be directly compared with theory. For multiple proton transfer processes, there are two types of mechanisms: stepwise transfer and concerted transfer. The Bell-Limbach model provides a simple theory to determine whether the proton transfer mechanism is stepwise or concerted from KIEs.

View Article and Find Full Text PDF

In van der Waals (vdW) heterostructures, the interlayer electron-phonon coupling (EPC) provides one unique channel to nonlocally engineer these elementary particles. However, limited by the stringent occurrence conditions, the efficient engineering of interlayer EPC remains elusive. Here we report a multitier engineering of interlayer EPC in WS/boron nitride (BN) heterostructures, including isotope enrichments of BN substrates, temperature, and high-pressure tuning.

View Article and Find Full Text PDF

Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the electrical polarization response to mechanical strain gradients that is not restricted by the symmetry of materials. However, large elastic deformation is usually difficult to achieve in most solids, and the strain gradient at minuscule is challenging to control. Here, we exploit the exotic structural inhomogeneity of grain boundary to achieve a huge strain gradient (~1.

View Article and Find Full Text PDF

Both sexes of a new species, Stylicletodes wellsi sp. nov. (Harpacticoida: Cletodidae), are described from material collected from sediments in the East China Sea.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces quasi van der Waals epitaxy, a method to grow single-crystal GaN films on graphene without a substrate, which allows for tailored atom configurations and improves semiconductor layer quality.
  • - Researchers achieved control over the lattice polarity of GaN films by adjusting their atomic arrangement using specific interface configurations while employing pre-irradiation techniques on graphene surfaces.
  • - An aluminum nitride interlayer unexpectedly causes metal polarity in nitride films due to an AlON layer forming in the presence of oxygen, shedding light on previous inconsistencies in the behavior of these films on 2D materials and paving the way for advanced semiconductor device development.
View Article and Find Full Text PDF

Starting from Shannon's definition of dynamic entropy, we propose a theory to describe the rare-event-determined dynamic states in condensed matter and their transitions and apply it to high-pressure ice VII. A dynamic intensive quantity named dynamic field, rather than the conventional thermodynamic intensive quantities such as temperature and pressure, is taken as the controlling variable. The dynamic entropy versus dynamic field curve demonstrates two dynamic states in the stability region of ice VII and dynamic ice VII.

View Article and Find Full Text PDF