Innovations in wearable sweat sensors hold great promise to provide deeper insights into molecular level health information non-invasively. Lactate, a key metabolite present in sweat, holds immense significance in assessing physiological conditions and performance in sports physiology and health sensing. This paper presents the development and characterization of stretchable electrodes with ultrahigh active surface area of 648 % for lactate sensing.
View Article and Find Full Text PDFPurpose: The immature and developing hypothalamic-pituitary-thyroid axis leads to different levels of thyroid function in twin neonates, including free thyroxine (FT4), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) levels. No reference intervals for twins have been established until now. To compensate for this lack, we collected data and established this standard across different gestational ages (GAs) and sexes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2023
Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein).
View Article and Find Full Text PDFStaphylococcus aureus is one of the most prevalent threats to public health. Rapid detection with high sensitivity and targeted killing is crucial to curb its spread. Herein, a metal-bearing nanocomposite, consisting of a bimetallic nanoparticle and a metal-organic framework (Au/Ir@Cu/Zn-MOF) was constructed.
View Article and Find Full Text PDFBacterial infections remain the leading cause of death worldwide today. The emergence of antibiotic resistance has urged the development of alternative antibacterial technologies to complement or replace traditional antibiotic treatments. In this regard, metal nanomaterials have attracted great attention for their controllable antibacterial functions that are less prone to resistance.
View Article and Find Full Text PDFSkin Interstitial Fluid (ISF) is an alternative source for biomarkers. Herein, a highly swellable microneedle patch (MNP) to rapidly extract ISF painlessly and bloodlessly is presented. The MNP is made of crosslinked methacrylated hyaluronic acid (MeHA) and dissolvable hyaluronic acid (HA) with the optimal balance of mechanical strength (0.
View Article and Find Full Text PDFColorimetric biosensors can be used to detect a particular analyte through color changes easily by naked eyes or simple portable optical detectors for quantitative measurement. Thus, it is highly attractive for point-of-care detections of harmful viruses to prevent potential pandemic outbreak, as antiviral medication must be administered in a timely fashion. This review paper summaries existing and emerging techniques that can be employed to detect viruses through colorimetric assay design with detailed discussion of their sensing principles, performances as well as pros and cons, with an aim to provide guideline on the selection of suitable colorimetric biosensors for detecting different species of viruses.
View Article and Find Full Text PDFTo overcome the traditional issues of protein labeling, we report herein an effective approach for noncovalent conjugation of the biomolecule-derived fluorescent nanodots (biodot) to functional proteins without the addition of chemical linkers for biosensor development. The as-prepared fluorescent biodot-protein conjugates are very stable near physiological pH, exhibiting excellent photostability and thermal stability. More importantly, the native functions of proteins, including drug binding and enzymatic activities, are well-preserved after conjugating with biodots.
View Article and Find Full Text PDFDNA carries important genetic instructions and plays vital roles in regulating biological activities in living cells. Proteins such as transcription factors binds to DNA to regulate the biological functions of DNA, and similarly many drug molecules also bind to DNA to modulate its functions. Due to the importance of protein-DNA and drug-DNA binding, there has been intense effort in developing novel nanosensors in the same length scale as DNA, to effectively study these binding interactions in details.
View Article and Find Full Text PDFComplete blood count with leukocyte (white blood cell, WBC) differential is one of the most frequently ordered clinical test for disease diagnosis. Herein, multifunctional fluorescent carbon dots derived from biomolecules (biodots) for rapid lysis-free whole blood analysis are developed. Specifically, two types of biodots are molecularly engineered through hydrothermal synthesis for differential blood cells labeling.
View Article and Find Full Text PDFNucleic acids are important molecules of life and have recently emerged as important functional materials to synthesize, organize and assemble inorganic nanoparticles for various technological applications. In this study, we have systematically investigated the four basic nucleotides of DNA as precursors to form fluorescent nucleotide derived biodots (N-dots) with unique singlet oxygen generation properties by one-pot hydrothermal synthesis. It has been discovered for the first time that the nitrogenous base adenine accounts for the bright fluorescence, while the sugar and phosphate groups of the nucleotide endow the N-dots with good photo-stability.
View Article and Find Full Text PDFMurine primary hair follicle induction is driven by the communication between the mesenchyme and epithelium and mostly governed by signaling pathways including wingless-related integration site (WNT), ectodysplasin A receptor (EDAR), bone morphogenetic protein (BMP), and fibroblast growth factor (FGF), as observed in genetically modified mouse models. Sheep skin may serve as a valuable system for hair research owing to the co-existence of sweat glands with wool follicles in trunk skin and asynchronized wool follicle growth pattern similar to that of human head hair follicles. However, the mechanisms underlying wool follicle development remain largely unknown.
View Article and Find Full Text PDFNatural amino acids possess side chains with different functional groups (R groups), which make them excellent precursors for programmable synthesis of biomolecule-derived nanodots (biodots) with desired properties. Herein, we report the first systematic study to uncover the material design rules of biodot synthesis from 20 natural α-amino acids via a green hydrothermal approach. The as-synthesized amino acid biodots (AA dots) are comprehensively characterized to establish a structure-property relationship between the amino acid precursors and the corresponding photoluminescent properties of AA dots.
View Article and Find Full Text PDFThe tumor suppressor protein p53 plays a central role in preventing cancer through interaction with DNA response elements (REs) to regulate target gene expression in cells. Due to its significance in cancer biology, relentless efforts have been directed toward understanding p53-DNA interactions for the development of cancer therapeutics and diagnostics. In this paper, we report a rapid, label-free and versatile colorimetric assay to detect wildtype p53 DNA-binding function in complex solutions.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2017
Bioluminescence has been widely recognized as a powerful imaging tool for biological investigations. Synthesis of molecular lanterns that mimic bioluminescence in nature is of great interest. Herein we report a synthesis of molecular lantern by utilizing the catalytic properties of ultrasmall (<2nm) gold nanoclusters (AuNC), which is inspired by the enzymatic light-up of luciferin in the biological system.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
February 2016
Objective: To observe the effect of Modified Yiqi Chutan Recipe (MYCR) on blood flow perfusion in treating mid-late stage non-small cell lung cancer (NSCLC) patients by using multislice CT perfusion (CTP) , and to assess the relationship between each CTP parameter and the prognosis as well.
Methods: Totally 87 mid-late stage NSCLC patients were randomly assigned to the treatment group (44 cases, Shenyi Capsule + MYCR +chemotherapy) and the control group (43 cases, chemotherapy alone) in the ratio of 1:1. And 21 days consisted of 1 therapeutic course, 4 courses in total.
J Colloid Interface Sci
April 2016
Targeted drug delivery has become important, attractive and challenging in biomedical science and applications. Anti-HER2 antibody-conjugated poly-l-lysine functionalized reduced graphene oxide (anti-HER2-rGO-PLL) nanocarriers were prepared to efficiently deliver doxorubicin targeting at the nucleus of HER2 over-expressing cancer cells. The polycationic PLL was first covalently grafted to graphene oxide (GO) nanosheets followed by reduction to obtain rGO-PLL with high drug loading and good colloidal stability.
View Article and Find Full Text PDFThe emerging graphene quantum dots (GQDs) and carbon dots (C-dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications.
View Article and Find Full Text PDFGraphene quantum dots (GQDs) hold great promise as a new class of fluorophores for bioimaging, owing to their remarkable physicochemical properties including tunable photoluminescence, excellent photostability, and biocompatibility. Despite their highly anticipated potentials, GQDs have yet to be used to specifically label and track molecular targets involved in dynamic cellular processes in live cells. Here, we demonstrate that GQDs can serve as universal fluorophores for bioimaging because they can be readily conjugated with a wide range of biomolecules while preserving their functionalities.
View Article and Find Full Text PDFInvestigation of cell-drug interaction is of great importance in drug discovery but continues to pose significant challenges to develop robust, fast and high-throughput methods for pharmacologically profiling of potential drugs. Recently, cell chips have emerged as a promising technology for drug discovery/delivery, and their miniaturization and flow-through operation significantly reduce sample consumption while dramatically improving the throughput, reliability, resolution and sensitivity. Herein we review various types of miniaturized cell chips used in investigation of cell-drug interactions.
View Article and Find Full Text PDFSubcellular-targeted drug delivery has much potential to defeat infectious diseases and cancers. Medical and/or biochemical effects of drugs/bioactive molecules delivered to subcellular compartments and their subcellular sites of action need to be investigated but have not been explored. Here the subcellular location-dependent biochemical responses of a potent anticancer drug, β-lapachone (β-lap), is investigated by a reduced graphene oxide (rGO)-functionalized optical nanoprobe, which can deliver and simultaneously monitor the drug effects at nanoscales.
View Article and Find Full Text PDF