Publications by authors named "Xin Sally Zheng"

Over the past few decades, much progress has been made in the clinical use of electrical stimulation of the central nervous system (CNS) to treat an ever-growing number of conditions from Parkinson's disease (PD) to epilepsy as well as for sensory restoration and many other applications. However, little is known about the effects of microstimulation at the cellular level. Most of the existing research focuses on the effects of electrical stimulation on neurons.

View Article and Find Full Text PDF

Chronic microstimulation is faced with challenges that require an additional understanding of stability and safety. We implanted silicon arrays coated with poly(3,4-ethylenedioxythiophene) (PEDOT)/Carbon Nanotubes (CNT), or PCand IrOx into the cortex of GCaMP6s mice and electrically stimulated them for up to 12 weeks. We quantified neuronal responses to stimulation using two-photon imaging and mesoscale fluorescence microscopy and characterized electrode performance over time.

View Article and Find Full Text PDF

Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents.

View Article and Find Full Text PDF

In order to address material limitations of biologically interfacing electrodes, modified silica nanoparticles are utilized as dopants for conducting polymers. Silica precursors are selected to form a thiol modified particle (TNP), following which the particles are oxidized to sulfonate modified nanoparticles (SNPs). The selective inclusion of hexadecyl trimethylammonium bromide allows for synthesis of both porous and nonporous SNPs.

View Article and Find Full Text PDF

Unlabelled: Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue.

View Article and Find Full Text PDF