Publications by authors named "Xin Mao"

Named after the Greek term for "hard fat", stearic acid has gradually entered people's field of vision. As an important component of various physiological cellular functions, stearic acid plays a regulatory role in diverse aspects of energy metabolism and signal transduction. Its applications range from serving as a bodily energy source to participating in endogenous biosynthesis.

View Article and Find Full Text PDF

Wheat is a most important food crop worldwide. Wheat is reported to be susceptible to a variety of fungi, which could induce huge economic losses and the contamination of potential mycotoxins could bring serious toxic effects. In this work, UV-C irradiation treatment on Fusarium infected wheat seeds during germination was investigated.

View Article and Find Full Text PDF

Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects.

View Article and Find Full Text PDF
Article Synopsis
  • Memory consolidation during sleep depends on brain areas like the cortex, thalamus, and hippocampus, but how insomnia disrupts their metabolic patterns is still unclear.
  • This study investigates how insomnia affects metabolites related to memory consolidation, using both clinical research with human participants and experimental studies with rats.
  • Findings show that insomnia with mild cognitive impairment is associated with lower GABA levels, while sleep deprivation in rats worsens metabolic imbalances in the hippocampus, linking these changes to cognitive decline.
View Article and Find Full Text PDF
Article Synopsis
  • Substituents can modify the electronic properties around carbon defects, affecting how charges are distributed.
  • Electron-donating substituents can donate electrons to carbon defects, which lowers the p band center and strengthens C-O bonds.
  • These changes lead to narrower band gaps and uneven orbital distribution, ultimately improving the thermodynamic and kinetic performance of the oxygen reduction reaction (ORR).
View Article and Find Full Text PDF

Efficient catalysts are imperative to accelerate the slow oxygen reaction kinetics for the development of emerging electrochemical energy systems ranging from room-temperature alkaline water electrolysis to high-temperature ceramic fuel cells. In this work, we reveal the role of cationic inductive interactions in predetermining the oxygen vacancy concentrations of 235 cobalt-based and 200 iron-based perovskite catalysts at different temperatures, and this trend can be well predicted from machine learning techniques based on the cationic lattice environment, requiring no heavy computational and experimental inputs. Our results further show that the catalytic activity of the perovskites is strongly correlated with their oxygen vacancy concentration and operating temperatures.

View Article and Find Full Text PDF

Catalytic oxidation pretreatment is a significant focus in the field of membrane fouling control; however, traditional catalytic materials are plagued by limitations in catalytic sites and challenges in recovery. In this study, a novel catalyst, B-doped NiFeO, was prepared with magnetic recovery capabilities and abundant oxygen vacancies to address landfill leachate treatment and mitigate membrane fouling. The results demonstrated the efficient activation of persulfate (PS) by the catalytic sites on B-NiFeO, which significantly degraded the complex organic pollutants like conjugated double bonds and aromatic compounds in landfill leachate.

View Article and Find Full Text PDF

High-speed precision planters are subject to high-speed (12~16 km/h) operation due to terrain undulation caused by mechanical vibration and sensor measurement errors caused by the sowing depth monitoring system's accuracy reduction problems. Thus, this study investigates multi-sensor data fusion technology based on the sowing depth monitoring systems of high-speed precision planters. Firstly, a sowing depth monitoring model comprising laser, ultrasonic, and angle sensors as the multi-sensor monitoring unit is established.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-β (Aβ) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 μM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 μM) of NMDA both exerts neuroprotective effect in Aβ-induced neurotoxicity.

View Article and Find Full Text PDF

This study investigated a sustainable approach through dielectric barrier discharge (DBD) enhanced Fenton technology coupling nanofiltration (NF) process for landfill leachate treatment. The DBD/Fe(II)/HO system exhibited significant synergistic effects, removing 55.07 % of TOC and 53.

View Article and Find Full Text PDF
Article Synopsis
  • Electrocatalytic C-N coupling between NO and CO is a promising, sustainable method for producing urea, although challenges in finding effective catalysts remain.
  • The study introduces a Cu-doped MnO nanotube (Cu-MnO) that shows improved urea production efficiency compared to pure MnO, achieving a maximum Faradaic efficiency of 54.7% and a yield rate of 116.7 mmol h g in a flow cell.
  • The Cu-MnO catalyst's stability and efficiency result from its unique structure, which stabilizes copper sites and enhances both structural integrity and electrochemical performance, ultimately facilitating faster urea production.
View Article and Find Full Text PDF

In view of the lack of accurate models for discrete element simulation in the current research and development process of forage harvesting and crushing machinery, the contact parameters were calibrated based on Hertz-Mindlin (no slip) contact model by EDEM simulation software with alfalfa stalk at primary florescence as the research object. Based on the angle of repose, the restitution coefficient, static friction coefficient, rolling friction coefficient of alfalfa stalks were determined through the Placket-Burman test, steepest ascent test and Box-Behnken test. The simulation test of the repose angle was carried out with the determined contact parameters.

View Article and Find Full Text PDF

Intestinal microecology (IM) is the largest and most important microecological system of the human body. Furthermore, it is the key factor for activating and maintaining the physiological functions of the intestine. Numerous studies have investigated the effects of the gut microbiota on the different tissues and organs of the human body as well as their association with various diseases, and the findings are gradually being translated into clinical practice.

View Article and Find Full Text PDF

Both ecological regime shifts and carbon cycling in lakes have been the subject of global debates in recent years. However, the direct linkage between them is poorly understood. Lake Baiyangdian, a representative large shallow lake with the coexistence of a macrophyte-dominated area (MDA) and an algae-dominated area (ADA) in eastern China, allowing better understanding of the relationship between regime shifts and organic carbon (OC) burial in lakes.

View Article and Find Full Text PDF

Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family.

View Article and Find Full Text PDF

Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood.

View Article and Find Full Text PDF

Toxic heavy metals are widely present in typical scenarios, such as mines and electroplating wastewater, presenting significant risks to biological and environmental safety. Membrane processes encounter a challenge in effectively intercepting heavy metals due to their small hydration radius. This research showcases the high efficiency of micelle-enhanced nanofiltration (MENF) in removing heavy metals.

View Article and Find Full Text PDF

Objective: To comprehensively assess the global, regional and national burden of polycystic ovary syndrome (PCOS) in incidence, prevalence, and years lived with disability (DLYs) based on the Global Burden of Disease Study (GBD) 2019.

Methods: This was a cross-sectional descriptive study. Data on PCOS incidence, prevalence, and DLYs from 1990 to 2019 were obtained from the GBD study 2019.

View Article and Find Full Text PDF

Considering the substantial role of ammonia, developing highly efficient electrocatalysts for nitrate-to-ammonia conversion has attracted increasing interest. Herein, we proposed a feasible strategy of p-d orbital hybridization via doping p-block metals in an Ag host, which drastically promotes the performance of nitrate adsorption and disassociation. Typically, a Sn-doped Ag catalyst (SnAg) delivers a maximum Faradaic efficiency (FE) of 95.

View Article and Find Full Text PDF

Alkali ions, major components at the electrode-electrolyte interface, are crucial to modulating reaction activity and selectivity of catalyst materials. However, the underlying mechanism of how the alkali ions catalyze the N reduction reaction (NRR) into ammonia remains elusive, posing challenges for experimentalists to select appropriate electrolyte solutions. In this work, by employing a combined experimental and computational approach, we proposed four essential roles of cation ions at Fe electrodes for N fixation: (i) promoting NN bond cleavage; (ii) stabilizing NRR intermediates; (iii) suppressing the competing hydrogen evolution reaction (HER); and (iv) modulating the interfacial charge distribution at the electrode-electrolyte interface.

View Article and Find Full Text PDF

The primary challenge in percutaneous coronary interventions for vascular restenosis is the occurrence of restenosis, which is defined by the excessive proliferation of neointimal tissue. Herein, our research team suggests that exosomes obtained from PSC, when paired with quercetin (Q@PSC-E), successfully reduce neointimal hyperplasia in a Sprague-Dawley rat model. Furthermore, the physical properties of the synthesized Q@PSC-E were examined using UV-vis, DLS, and FT-IR characterization techniques.

View Article and Find Full Text PDF

Objective: To unveil the pathological changes associated with demyelination in schizophrenia (SZ) and its consequential impact on interstitial fluid (ISF) drainage, and to investigate the therapeutic efficacy of ursolic acid (UA) in treating demyelination and the ensuing abnormalities in ISF drainage in SZ.

Methods: Female C57BL/6J mice, aged 6-8 weeks and weighing (20±2) g, were randomly divided into three groups: control, SZ model, and UA treatment. The control group received intraperitoneal injection (ip) of physiological saline and intragastric administration (ig) of 1% carboxymethylcellulose sodium (CMC-Na).

View Article and Find Full Text PDF

B vitamins and probiotics are commonly used dietary supplements with well-documented health benefits. However, their potential interactions remain poorly understood. This study aims to explore the effects and underlying mechanisms of the combined use of B vitamins and probiotics by liquid chromatography-triple quadrupole mass spectrometry analysis, pharmacokinetic modeling, and 16S rRNA gene sequencing.

View Article and Find Full Text PDF

The structural variances of adsorbents play a crucial role in determining the number of effective adsorption sites and pretreatment performance. However, there is still a gap in comprehending the impact of different carbon structural adsorbents on membrane fouling. Therefore, this study aimed to compare the efficacy of granular activated carbon (GAC), powdered activated carbon (PAC), and activated carbon fiber (ACF) in mitigating membrane fouling during municipal sewage reclamation using an aerobic granular sludge membrane bioreactor (AGMBR).

View Article and Find Full Text PDF