Publications by authors named "Xin Hua Sui"

Article Synopsis
  • Bradyrhizobium arachidis strain CCBAU 051107 exhibits different forms (swollen and nonswollen) in peanut and Sophora flavescens, impacting their nitrogen fixation efficiency.
  • A comparative analysis of root nodule morphology, transcriptomes, and nitrogen fixation efficiencies revealed that peanut nodules displayed three times higher nitrogenase activity than those of Sophora flavescens.
  • Gene expression analysis showed that certain genes related to nitrogen fixation and energy metabolism were upregulated in both bacteroid types, with notable differences in expression levels tied to the specific morphology and efficiency of symbiosis with each plant host.
View Article and Find Full Text PDF

Bradyrhizobium guangxiense CCBAU53363 efficiently nodulates peanut but exhibits incompatible interaction with mung bean. By comparing the common region with those of other peanut bradyrhizobia efficiently nodulating these two hosts, distinctive characteristics with a single isoform () and a truncated were identified. However, the regulatory roles of NodD1 and NolA and their coordination in legume-bradyrhizobial interactions remain largely unknown in terms of explaining the contrasting symbiotic compatibility.

View Article and Find Full Text PDF

Type I peanut bradyrhizobial strains can establish efficient symbiosis in contrast to symbiotic incompatibility induced by type II strains with mung bean. The notable distinction in the two kinds of key symbiosis-related regulators nolA and nodD close to the nodABCSUIJ operon region between these two types of peanut bradyrhizobia was found. Therefore, we determined whether NolA and NodD proteins regulate the symbiotic adaptations of type I strains to different hosts.

View Article and Find Full Text PDF

The application of microbial fertilizer plays an important role in improving soil restoration and fertilizer utilization. The effects of microbial fertilizer are greatly affected by crop genotypes and ecological conditions. Little is known about the effects of microbial fertilizers on maize production in Northeast China.

View Article and Find Full Text PDF
Article Synopsis
  • Rhizobia establish symbiosis with their specific host plants, with Type I strains showing compatibility while Type II strains do not work well with certain hosts.
  • Researchers used transposon mutagenesis on Type II strain CCBAU 53363 to identify genetic factors causing this incompatibility, discovering seven mutant strains that increased nodule formation on the host.
  • Genetic analysis revealed that six of the mutants contained chromosome-encoded genes and one was in the symbiotic plasmid, indicating that the plasmid genes might directly affect symbiotic incompatibility while chromosome genes play a regulatory role.
View Article and Find Full Text PDF

Nine slow-growing rhizobia isolated from effective nodules on peanut (Arachis hypogaea) were characterized to clarify the taxonomic status using a polyphasic approach. They were assigned to the genus Bradyrhizobium on the basis of 16S rRNA sequences. MLSA of concatenated glnII-recA-dnaK genes classified them into three species represented by CCBAU 53390, CCBAU 51670 and CCBAU 51778, which presented the closest similarity to B.

View Article and Find Full Text PDF

Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules.

View Article and Find Full Text PDF

Two bacterial strains isolated from root nodules of soybean were characterized phylogenetically as members of a distinct group in the genus Ensifer based on 16S rRNA gene comparisons. They were also verified as a separated group by the concatenated sequence analyses of recA, atpD and glnII (with similarities ≤93.9% to the type strains for defined species), and by the average nucleotide identities (ANI) between the whole genome sequence of the representative strain CCBAU 251167 and those of the closely related strains in Ensifer glycinis and Ensifer fredii (90.

View Article and Find Full Text PDF

Rhizobial strains from root nodules of Astragalus mongholicus and soybean (Glycine max) were characterized phylogenetically as members of the genus Ensifer (formerly named Sinorhizobium), based on 16S rRNA gene sequence comparisons. Results based upon concatenated sequence analysis of three housekeeping genes (recA, atpD and glnII, ≤ 93.8 % similarities to known species) and average nucleotide identity (ANI) values of whole genome sequence comparisons (ranging from 89.

View Article and Find Full Text PDF

A Gram-stain-positive, aerobic, non-motile, coccoid, arsenic-resistant actinobacterial strain, designated CM1E1, was isolated from the lateral root tissue of grown on a mine tailing in San Luis Potosi, Mexico. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CM1E1 was clustered closely with species of the genus and showed the highest sequence similarity of 98.7 % to TA68.

View Article and Find Full Text PDF

Two Gram-negative, aerobic, non-motile, rod-shaped bacterial strains, FH13T and FH23, representing a novel group of Rhizobium isolated from root nodules of Phaseolus vulgaris in Mexico, were studied by a polyphasic analysis. Phylogeny of 16S rRNA gene sequences revealed them to be members of the genus Rhizobium related most closely to 'Rhizobium anhuiense' CCBAU 23252 (99.7 % similarity), Rhizobium leguminosarum USDA 2370T (98.

View Article and Find Full Text PDF

A Gram-positive, aerobic, nonmotile strain, NM2E3(T) was identified as Brevibacterium based on the 16S rRNA gene sequence analysis and had the highest similarities to Brevibacterium jeotgali SJ5-8(T) (97.3 %). This novel bacterium was isolated from root tissue of Prosopis laegivata grown at the edge of a mine tailing in San Luis Potosí, Mexico.

View Article and Find Full Text PDF

Seven slow-growing rhizobia isolated from effective nodules of Arachis hypogaea were assigned to the genus Bradyrhizobium based on sharing 96.3-99.9 % 16S rRNA gene sequence similarity with the type strains of recognized Bradyrhizobium species.

View Article and Find Full Text PDF

Three novel strains, RITF741T, RITF1220 and RITF909, isolated from root nodules of Acacia melanoxylon in Guangdong Province of China, have been previously identified as members of the genus Mesorhizobium, displaying the same 16S rRNA gene RFLP pattern. Phylogenetic analysis of 16S rRNA gene sequences indicated that the three strains belong to the genus Mesorhizobium and had highest similarity (100.0 %) to Mesorhizobium plurifarium LMG 11892T.

View Article and Find Full Text PDF

Four rhizobia-like strains, isolated from root nodules of Pisum sativum and Vicia faba grown in Anhui and Jiangxi Provinces of China, were grouped into the genus Rhizobium but were distinct from all recognized species of the genus Rhizobium by phylogenetic analysis of 16S rRNA and housekeeping genes. The combined sequences of the housekeeping genes atpD, recA and glnII for strain CCBAU 23252(T) showed 86.9 to 95% similarity to those of known species of the genus Rhizobium.

View Article and Find Full Text PDF

Six slow-growing rhizobial strains isolated from effective nodules of Erythrophleum fordii were classified into the genus Bradyrhizobiumbased on their 16S rRNA gene sequences. The results of multilocus sequence analysis of recA, glnII and gyrB genes and 16S-23S rRNA intergenic spacer (IGS) sequence phylogeny indicated that the six strains belonged to two novel species, represented by CCBAU 53325T and CCBAU 51502T, which were consistent with the results of DNA-DNA hybridization; CCBAU 53325T had 17.65-25.

View Article and Find Full Text PDF

A Gram-negative, white, non-motile, rod shaped bacterial strain BN-19(T) was isolated from a root nodule of groundnut (Arachis hypogaea) in Pakistan. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain BN-19(T) formed a subclade in the genus Rhizobium together with Rhizobium alkalisoli CCBAU 01393(T), Rhizobium vignae CCBAU 05176(T), Rhizobium huautlense SO2(T) and Rhizobium tarimense PL-41(T) with sequence similarities of 97.5, 97.

View Article and Find Full Text PDF

Five bacterial strains representing 45 isolates originated from root nodules of the medicinal legume Sophora flavescens were defined as two novel groups in the genus Rhizobium based on their phylogenetic relationships estimated from 16S rRNA genes and the housekeeping genes recA, glnII and atpD. These groups were distantly related to Rhizobium leguminosarum USDA 2370(T) (95.6 % similarity for group I) and Rhizobium phaseoli ATCC 14482(T) (93.

View Article and Find Full Text PDF

Two novel Gram-stain-negative strains (CCBAU 03422(T) and CCBAU 03415) isolated from root nodules of Sophora flavescens were classified phylogenetically into the genus Phyllobacterium based on the comparative analysis of 16S rRNA and atpD genes. They showed 99.8 % rRNA gene sequence similarities to Phyllobacterium brassicacearum LMG 22836(T), and strain CCBAU 03422(T) showed 91.

View Article and Find Full Text PDF

The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized.

View Article and Find Full Text PDF

A Gram-stain-negative, non-motile, pale yellow, rod-shaped bacterial strain, YW14(T), was isolated from soil and its taxonomic position was investigated by a polyphasic study. Strain YW14(T) did not form nodules on three different legumes, and the nodD and nifH genes were not detected by PCR. Strain YW14(T) contained Q-10 as the predominant ubiquinone.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyses genetic differences among various strains of Bradyrhizobium that nodulate soybeans in China, revealing complexities in their taxonomy.
  • Through phylogenetic analysis of both "island" and "off-island" genes, researchers identified eleven genospecies and noted significant differences in genetic diversity and recombination rates between these two types of genes.
  • Findings suggested that island genes had unique phylogenetic patterns, with certain clusters of strains, indicating differentiated gene flow and evolutionary pathways among Bradyrhizobium species.
View Article and Find Full Text PDF

Three slow-growing rhizobial strains, designated RITF806(T), RITF807 and RITF211, isolated from root nodules of Acacia melanoxylon grown in Ganzhou city, Jiangxi Province, China, had been previously defined, based on amplified 16S rRNA gene restriction analysis, as a novel group within the genus Bradyrhizobium. To clarify their taxonomic position, these strains were further analysed and compared with reference strains of related bacteria using a polyphasic approach. According to 16S rRNA gene sequence analysis, the isolates formed a group that was closely related to 'Bradyrhizobium rifense' CTAW71, with a similarity value of 99.

View Article and Find Full Text PDF

The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes.

View Article and Find Full Text PDF