The In-Bi-Sn low-temperature solder alloys are regarded as potential candidates for cryogenic and space exploration applications. This study investigates the variations in the mechanical properties and microstructures of two different compositions: In15wt%Bi35wt%Sn and In30wt%Bi20wt%Sn, after exposure to a low-temperature environment (-20 °C) for 10 months. An increase in the ultimate tensile strength was observed across all the tested samples and a decrease in elongation to failure was observed in In30wt%Bi20wt%Sn.
View Article and Find Full Text PDFThis research evaluates the mechanical properties of a variety of binary In-Sn alloys as potential candidates for low temperature electronic joints. The tensile and hardness tests of as-cast In-5Sn, In-12.5Sn, In-25Sn, In-30Sn, In-35Sn, In-40Sn, In-50Sn, In-60Sn, In-80Sn (wt.
View Article and Find Full Text PDFThe complex reaction between liquid solder alloys and solid substrates has been studied ex-situ in a few studies, utilizing creative setups to "freeze" the reactions at different stages during the reflow soldering process. However, full understanding of the dynamics of the process is difficult due to the lack of direct observation at micro- and nano-meter resolutions. In this study, high voltage transmission electron microscopy (HV-TEM) is employed to observe the morphological changes that occur in CuSn between a Sn-3.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
August 2020
Sn-based compounds are promising candidates for application as anodes in lithium-ion batteries (LIBs) due to the favourable storage capacity of Sn at 993 mAh g compared to carbon at 372 mAh g. The use of Sn-based anodes also avoids some of the safety concerns associated with carbon anodes. However, the large volume changes during lithiation and delithiation of pure Sn anodes often results in poor cyclic performance.
View Article and Find Full Text PDF