Publications by authors named "Xin Bian"

Extended-synaptotagmins (E-Syts) are proteins located on the endoplasmic reticulum (ER) that tether the ER to the plasma membrane (PM) and regulate their lipid homeostasis via its lipid transfer module, the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain. Here, we describe in vitro DNA nanostructure-assisted lipid transfer assays investigating how the SMP domain transports lipids between membranes and associates with the membranes to extract and release lipids. The lipid transfer signal was detected through fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF

We present an innovative platform designed to mimic the mucociliary clearance system, an essential defense mechanism in the respiratory tract. Our system utilizes PDMS and iron powder to fabricate micro-ciliary arrays that dynamically respond to alternating magnetic fields. The cilia exhibit an asymmetric beating pattern under a cyclically varying magnetic field, which propels microspheres directionally in a fluid medium, simulating the movement of mucus.

View Article and Find Full Text PDF

Rice is a food with a high starch content, comprising over 75% of its composition. However, prolonged and excessive consumption of this cereal may lead to elevated blood glucose levels, which can increase the risk of obesity, type 2 diabetes, and cardiovascular disease. Butyric acid (BA), the primary energy source for colonic epithelial cells, exhibits the highest utilization rate among short-chain fatty acids, underscoring its importance for human health.

View Article and Find Full Text PDF
Article Synopsis
  • * Our research uses numerical simulations to explore how EGL interacts with flowing red blood cells (RBCs) in microtubes, considering factors like shear rate and EGL structure.
  • * Findings show that as RBCs flow, they compress the EGL, which affects its height and the RBC shape, leading to changes in the space between RBCs and the wall of the tube, particularly in microtubes with diameters of 7 to 10 µm, highlighting the EGL's role in blood flow dynamics.
View Article and Find Full Text PDF

The potential biological properties of protein hydrolysates have generated considerable research interest. This study was to hydrolyze black soybean protein (BSP) using five different commercial enzymes, and elucidate the influence of these enzymes on the structure and biological activities of the resulting hydrolysates. Enzymatic treatment changed secondary and tertiary structures of BSP, decreased particle size, α-helix and β-sheet.

View Article and Find Full Text PDF

Rice is commonly utilized as a wheat bread substitute due to its low allergenicity. However, rice bread faces challenges in processing efficiency and the formation of a cohesive gel network structure, resulting in suboptimal taste Hence, this study compared four improvers-trypsin, whey protein (WPC), hydroxypropyl methyl cellulose (HPMC), and molecularly distilled monoglycerides (GMSs). The impacts of the four improvers on the processing attributes of rice dough were comprehensively assessed across fermentation, moisture content analysis, rheology, heat stability, and pasting characteristics.

View Article and Find Full Text PDF

This study used glycine (Gly), glucose (Glu), and soybean meal phytic acid (PA) as raw materials to investigate the effect of different PA addition amounts on the Gly-Glu Maillard reaction system and the antioxidant capacity of the products through rheological properties, particle size, chromatography, and other methods. The results showed that with the addition of PA, the apparent viscosity and average particle size of the system decreased, the thermal denaturation temperature increased, the product concentration decreased, the color became brighter, and the antioxidant performance was enhanced. This indicates that PA reacts with Gly and Glu to form PA - Gly and PA - Glu complexes, respectively, and hinders the Maillard reaction.

View Article and Find Full Text PDF

Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection.

View Article and Find Full Text PDF

With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things.

View Article and Find Full Text PDF

Background: Gluten-free bread (GFB) has technical bottlenecks such as hard texture, rough taste and low nutrition in practical production. In order to solve these problems, this study used germinated brown rice starch as the main raw material, and investigated the effects of soybean isolate protein (SPI) on the multiscale structure of germinated brown rice starch and bread quality.

Results: A gluten-free rice bread process simulation system was established, and the interaction between SPI and starch in the simulation system was characterized.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored how different chain-length fatty acids (lauric, myristic, and palmitic acid) affect rice starch retrogradation, finding that longer carbon chains create a more compact structure.
  • - Longer chain fatty acids demonstrated stronger hydrophobicity and steric hindrance, which led to reduced water migration and structural order in rice starch, enhancing its gel viscosity and thermal stability.
  • - The most significant inhibition of retrogradation was noted with 5% palmitic acid, highlighting its potential benefits for processing rice starch-based foods.
View Article and Find Full Text PDF

Pickering emulsions with good freeze-thaw stability are essential in frozen food applications. This study developed a high freeze-thaw stabilized soy protein isolate (SPI)-maltose (M) Pickering emulsion and applied it to frozen doughs to investigate and reveal its impacts on the processing properties of the frozen dough. The results showed that after the freeze-thaw cycle, with a volume ratio of 1:2 of SPI to M, the appropriate amount of M changed the structure of SPI.

View Article and Find Full Text PDF

This paper introduces an innovative non-contact heart rate monitoring method based on Wi-Fi Channel State Information (CSI). This approach integrates both amplitude and phase information of the CSI signal through rotational projection, aiming to optimize the accuracy of heart rate estimation in home environments. We develop a frequency domain subcarrier selection algorithm based on Heartbeat to subcomponent ratio (HSR) and design a complete set of signal filtering and subcarrier selection processes to further enhance the accuracy of heart rate estimation.

View Article and Find Full Text PDF

Background: This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.

View Article and Find Full Text PDF

Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by dynamin-like GTPase atlastin (ATL). This fundamental process relies on GTP-dependent domain rearrangements in the N-terminal region of ATL (ATL), including the GTPase domain and three-helix bundle (3HB). However, its conformational dynamics during the GTPase cycle remain elusive.

View Article and Find Full Text PDF

In order to improve the retrogradation of rice starch (RS) and the quality of rice products, soy protein isolate (SPI), whey protein isolate (WPI), and rice flour were mixed and further extruded into mixed flour. The physicochemical properties and morphology of starch of extruded rice flour (ERS) and starch of extruded mixtures of SPI, WPI, and rice flour (SPI-WPI-ERS) were analyzed. The distribution of amylopectin chain length, molecular weight, microstructure, crystallinity, short-range ordered structure, pasting properties, and thermodynamic properties of RS, ERS, and SPI-WPI-ERS were measured.

View Article and Find Full Text PDF

Minerals are the essential micronutrients for human health. Brown rice is a whole-grain food rich in minerals, with its bran portion limiting the application of minerals. In the present study, the changes in the contents of 23 different minerals (Na, Mg, K, Ca, B, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Sb, Ba, Li, Al, As, Cd, Sn, Hg, and Pb) in brown rice were evaluated during 17, 24, 30, 35, and 48 h of germination.

View Article and Find Full Text PDF

Physics-informed neural networks (PINNs) are employed to solve the classical compressible flow problem in a converging-diverging nozzle. This problem represents a typical example described by the Euler equations, a thorough understanding of which serves as a guide for solving more general compressible flows. Given a geometry of the channel, analytical solutions for the steady states do indeed exist, and they depend on the ratio between the back pressure of the outlet and the stagnation pressure of the inlet.

View Article and Find Full Text PDF

Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra.

View Article and Find Full Text PDF

Synchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI.

View Article and Find Full Text PDF

The optical surface of extreme ultraviolet (EUV) lithography machines is highly vulnerable to contamination by hydrocarbons, resulting in the formation of carbon deposits that significantly degrade the quality and efficiency of lithography. The dynamic gas lock (DGL) has been proven as an effective approach to alleviate carbon deposition. However, the majority of existing studies on carbon deposition neglect the influence of the DGL.

View Article and Find Full Text PDF

Cell-cultured meat, which is obtained by adsorbing cells on the three-dimensional scaffold, is considered a potential solution to animal welfare issues. Edible and safe cell-cultured meat scaffolds are a key part of its research. Soy protein isolate (SPI) hydrogel has a three-dimensional network structure and has been studied for L929 cell culture because of its non-toxicity and biocompatibility.

View Article and Find Full Text PDF

In the process of data transmission in mobile ad hoc networks, it is essential to establish optimal routes from source nodes to destination nodes. However, as network density increases, this process is often accompanied by a significant rise in network overhead. To address this issue, the ND-AODV (neighborhood density AODV) protocol has been introduced, which reduces the probability of transmitting control information in high-density node environments to mitigate network overhead.

View Article and Find Full Text PDF
Article Synopsis
  • The endoplasmic reticulum (ER) is a crucial membrane system in eukaryotic cells, consisting of a network of tubules and sheets that connects various organelles.
  • This network plays a key role in organelle positioning, remodeling, and facilitates lipid exchange and important signaling processes.
  • The review highlights recent discoveries about ER interactions with several organelles, including mitochondria, Golgi, and lysosomes, and discusses their molecular mechanisms and physiological implications.
View Article and Find Full Text PDF