Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.
View Article and Find Full Text PDFAt near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age.
View Article and Find Full Text PDF