J Pharmacol Exp Ther
November 2011
It is well known that ethanol modulates the function of the Cys loop ligand-gated ion channels, which include the inhibitory glycine receptors (GlyRs). Previous studies have consistently shown that transmembrane and extracellular sites are essential for ethanol actions in GlyRs. In addition, recent evidence has shown that the ethanol modulation of GlyRs is also affected by G protein activation through Gβγ subunits.
View Article and Find Full Text PDFThis study evaluated the condition factor, gonadosomatic, and hepatosomatic indexes, occurrence of plasmatic vitellogenin (Vg), and frequency of spermatogenic maturity stages in male Chilean flounders, Paralichthys adspersus, caught at three different coastal sites off the Bio-Bio region, central Chile, during 1 year. The Vg was detected by polyacrylamide gel electrophoresis with sodium dodecyl sulfate and Western blot analyses using an antibody against Chilean flounder Vg. The spermatogenic maturity stages were analyzed by histological gonadic diagnostic.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2011
We studied the acquisition of dehydroascorbic acid by rat hepatocytes, H4IIE rat hepatoma cells and Xenopus laevis oocytes. Transport kinetics and competition and inhibition studies revealed that rat hepatocytes transport oxidized dehydroascorbic acid through a single functional component possessing the functional and kinetic properties expected for the glucose transporter GLUT2. On the other hand, rat hepatoma cells showed expression of at least two dehydroascorbic acid transporters with the expected functional and kinetic properties expected for GLUT1 and GLUT2.
View Article and Find Full Text PDFImmature stage VI Xenopus oocytes are arrested at the G(2)/M border of meiosis I until exposed to progesterone, which induces meiotic resumption through a non-genomic mechanism. One of the earliest events produced by this hormone is inhibition of the plasma membrane enzyme adenylyl cyclase (AC), with the concomitant drop in intracellular cAMP levels and reinitiation of the cell cycle. Recently Gsalpha and Gbetagamma have been shown to play an important role as positive regulators of Xenopus oocyte AC, maintaining the oocyte in the arrested state.
View Article and Find Full Text PDFXenopus laevis oocyte maturation is induced by the steroid hormone progesterone through a nongenomic mechanism that implicates the inhibition of the effector system adenylyl cyclase (AC). Recently, it has been shown that the G protein betagamma heterodimer is involved in oocyte maturation arrest. Since AC is the proposed target for Gbetagamma action, we considered of importance to identify and characterize the Gbetagamma regulated AC isoform(s) that are expressed in the Xenopus oocyte.
View Article and Find Full Text PDFHeterotrimeric G-proteins transduce signals from heptahelical transmembrane receptors to different effector systems, regulating diverse complex intracellular pathways and functions. In brain, facilitation of depolarization-induced neurotransmitter release for synaptic transmission is mediated by Gsalpha and Gqalpha. To identify effectors for Galpha-proteins, we performed a yeast two-hybrid screening of a human brain cDNA library, using the human Galphas protein as a bait.
View Article and Find Full Text PDFProgesterone, produced by follicular cells, induces Xenopus laevis oocyte maturation through a very early event that inhibits the activity of the adenylyl cyclase effector system. The participation of a G-protein has been implicated, based on the fact that the inhibitory effect of the steroid is GTP-dependent, and it has been proposed that progesterone acts interfering with G(alpha)s function at the plasma membrane. Here we investigate whether the change in oocyte G(alpha)s levels affects the maturation process induced by progesterone.
View Article and Find Full Text PDFG-protein alpha subunits consist of two domains: a Ras-like domain also called GTPase domain (GTPaseD), structurally homologous to monomeric G-proteins, and a more divergent domain, unique to heterotrimeric G-proteins, called helical domain (HD). G-protein activation, requires the exchange of bound GDP for GTP, and since the guanine nucleotide is buried in a deep cleft between both domains, it has been postulated that activation may involve a conformational change that will allow the opening of this cleft. Therefore, it has been proposed, that interdomain interactions are playing an important role in regulating the nucleotide exchange rate of the alpha subunit.
View Article and Find Full Text PDF