Enzymatic degradation of polymers holds promise for advancing towards a bio-based economy. However, bulky polymers presents challenges in accessibility for biocatalysts, hindering depolymerization reactions. Beyond the impact of crystallinity, polymer chains can reside in different conformations affecting binding efficiency to the enzyme.
View Article and Find Full Text PDFMore than 8 billion tons of plastic waste has been generated, posing severe environmental consequences and health risks. Due to prolonged exposure, microplastic particles are found in human blood and other bodily fluids. Despite a lack of toxicity studies regarding microplastics, harmful effects for humans seem plausible and cannot be excluded.
View Article and Find Full Text PDFInvited for this month's cover is the groups of Prof. Minna Hakkarainen, Prof. István Furó and Assoc.
View Article and Find Full Text PDFRecycling plastics is the key to reaching a sustainable materials economy. Biocatalytic degradation of plastics shows great promise by allowing selective depolymerization of man-made materials into constituent building blocks under mild aqueous conditions. However, insoluble plastics have polymer chains that can reside in different conformations and show compact secondary structures that offer low accessibility for initiating the depolymerization reaction by enzymes.
View Article and Find Full Text PDFMost chemotherapeutics target DNA integrity and thereby trigger tumour cell death through activation of DNA damage responses that are tightly coupled to the cell cycle. Disturbances in cell cycle regulation can therefore lead to treatment resistance. Here, a comprehensive analysis of cell cycle checkpoint activation following doxorubicin (doxo) treatment was performed using flow cytometry, immunofluorescence and live-cell imaging in a panel of mutated ultra high-risk neuroblastoma (NB) cell lines, SK-N-DZ, Kelly, SK-N-AS, SK-N-FI, and BE(2)-C.
View Article and Find Full Text PDF