Publications by authors named "Ximei Qian"

We have demonstrated a facile and low-cost approach for the fabrication of binary "island" shaped arrays (BISA) with high-density hot spots as reproducible surface-enhanced Raman scattering (SERS) substrates by depositing a self-assembled monolayer Au nanoparticle (AuNP) film with small gaps onto a two-dimensional (2D) silica microsphere opal structure. By varying the size of silica spheres, the SERS performance of the BISA substrate with an enhancement factor (EF) of 3.74 × 10 magnitude and the corresponding signal intensity deviation of below 8% using 770 nm silica sphere arrays were achieved.

View Article and Find Full Text PDF

Currently in China, the schistosomiasis control program has shifted its focus from transmission control to the elimination of the disease. Effective forecast and surveillance systems of schistiosomiasis are of great importance for issuing timely and early warnings on risk of infection, and therefore implementing preventive measures to avoid infection. There is great demand in more sensitive and specific methods to improve the surveillance system for early detection of S.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 10(6) cells, a sensitivity (0.

View Article and Find Full Text PDF

Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents.

View Article and Find Full Text PDF

High-affinity anchoring groups such as isothiocyanate (ITC, -N═C═S) are often used to attach organic chromophores (reporter molecules) to colloidal gold nanocrystals for surface-enhanced Raman scattering (SERS), to atomically smooth gold surfaces for tip-enhanced Raman scattering, and to scanning tunneling microscopy probes (nanosized electrodes) for single-molecule conductance measurements. However, it is still unclear how the attached molecules interact electronically with the underlying surface, and how the anchoring group might affect the electronic and optical properties of such nanoscale systems. Here we report systematic surface-enhanced Raman studies of two organic chromophores, malachite green (MG) and its ITC derivative (MGITC), that have very different functional groups for surface binding but nearly identical spectroscopic properties.

View Article and Find Full Text PDF

The detection and characterization of circulating tumor cells (CTC) holds great promise for personalizing medicine and optimizing systemic therapy. However, low specificity, low sensitivity, and the time consuming nature of current approaches have impeded clinical adoption. Here we report a new method using surface-enhanced Raman spectroscopy (SERS) to directly measure targeted CTCs in the presence of white blood cells.

View Article and Find Full Text PDF

Stimuli-responsive surface-enhanced Raman scattering (SERS) nanoparticles have been developed by using colloidal gold nanocrystals and a class of thiolated block copolymers consisting of a pH-responsive polymer segment, an amphiphilic polyethylene glycol segment, and a lipoic acid anchoring group. The results demonstrate that SERS signals can be switched on and off by molecular conformations in response to pH. An important finding is that neutralized polymethacrylic acid (PMAA) molecules are able to interact with amphiphilic polyethylene glycol (PEG) chains, leading to highly compact and intermingled copolymer structures on the surface of nanoparticles.

View Article and Find Full Text PDF

Magnetic iron oxide (IO) nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI), which is widely used for clinical oncology imaging.

View Article and Find Full Text PDF

We have developed a new class of surface-enhanced Raman scattering beacons (SERS beacons) that can be turned on and off by long-range plasmonic coupling, induced by biomolecular recognition and binding events. The beacons are based on colloidal gold nanocrystals in two sizes (40 and 60 nm) and are prepared by spectral encoding with a Raman reporter molecule, functionalized with thiolated DNA probes, and stabilized and protected by low molecular weight poly(ethylene glycol)s (PEGs). The results show the SERS signal intensities increase by 40-200-fold when the nanoparticle beacons are activated by plasmonic coupling, much higher than the bright-to-dark intensity ratios reported for traditional molecular beacons.

View Article and Find Full Text PDF

We describe biocompatible and nontoxic nanoparticles for in vivo tumor targeting and detection based on pegylated gold nanoparticles and surface-enhanced Raman scattering (SERS). Colloidal gold has been safely used to treat rheumatoid arthritis for 50 years, and has recently been found to amplify the efficiency of Raman scattering by 14-15 orders of magnitude. Here we show that large optical enhancements can be achieved under in vivo conditions for tumor detection in live animals.

View Article and Find Full Text PDF

The synchrotron based vacuum ultraviolet-pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of ammonia (NH(3)) has been measured in the energy range 10.12-12.12 eV using a room-temperature NH(3) sample.

View Article and Find Full Text PDF