Publications by authors named "Xiling Niu"

An extrinsic fiber optic Fabry-Perot interferometric (EFPI) ultrasonic sensor based on a grooved silicon diaphragm for partial discharge (PD) detection has been proposed. The size of the groove is determined by finite element simulation, which allows the resonant frequency of the sensor to meet the requirements of PD ultrasonic detection and improves the sensitivity of the sensor by 5.07 times compared with that based on a traditional circular diaphragm.

View Article and Find Full Text PDF

Benefiting from the associative exchange reaction, vitrimers could be deformed to various shapes while maintaining the integrity of the network, thus being regarded as promising candidates for shape memory polymers. However, it is still a challenge to design the highly desired smart electronic devices with triple and multishape memory performances through a facile method. Here, a novel dual-cross-linked poly(acrylonitrile--butyl acrylate--hydroxyethyl methacrylate--zinc methacrylate) (Zn-PABHM) copolymer was developed via a facile and one-pot free radical polymerization strategy.

View Article and Find Full Text PDF

A new cyano-distyrylbenzene derivative with a mechano-force induced high contrast transition in color and emission was demonstrated here. Under mechanical stimuli, the emission peak can undergo a large wavelength shift from 440 nm to 650 nm, while the appearance color can switch from white to pink.

View Article and Find Full Text PDF

We designed and characterized an asterisk-shaped luminogen, hexakis(pyridin-4-ylthio)benzene (HPTB). Via external stimuli such as CHOH, H, and Ag, HPTB's luminogenic character transitioned from blue fluorescence to green, yellow, and orange phosphorescence. Results showed that this interconversion was a reversible process that was also reproducible in liquid and in the solid state.

View Article and Find Full Text PDF

As an emerging class of dynamic cross-linked network, vitrimers have attracted much attention due to the combination of mechanical advantages of thermosets and recyclability of thermoplastics at an elevated temperature. In particular, most vitrimers with multi-shape memory properties usually involve more than one thermal transition or molecular switch, which might pose a challenge for facile sample fabrication and potentially limits their applications. In pursuit of a more universal and simple route, utilizing commercially available and inexpensive reagents to prepare shape-memory vitrimers with dual cross-linked network from vinyl monomer-derived prepolymers is reported here.

View Article and Find Full Text PDF

Densely H-bonding assemblies are the key strategy found by nature to enhance the rupture strength of natural polymers without sacrificing their toughness, such as spider silk, while it still remains a great challenge using such intriguing strategy to prepare high-performance synthesized polymer or biopolymer enhanced polymer nanocomposites. To address this challenge, we report here a bio-inspired strategy using densely H-bonding assembly for facile fabrication of high performance polyurethane (PU) nanocomposites reinforced by hydroxyl-rich cellulose nanocrystals (CNCs) functionalized with 2-ureido-4-[1 H]-pyrimidinone motifs (CNC-UPy) containing self-complementary hydrogen bonds. These PU/CNC-UPy nanocomposites showed remarkably improved mechanical strength without sacrificing the elongation at break and toughness compared to pure PU matrix.

View Article and Find Full Text PDF