Bumblebees play a significant role as pollinators for many wild plants and cultivated crops, owing to their elongated proboscis, resilience to diverse weather conditions, robustly furred bodies, and their unique capacity for buzz-pollination. To better understand the effect of greenhouse microclimates on bumblebee foraging behavior and working modes, a long-term record of foraging activity for each Bombus terrestris L. (Hymenoptera: Apidae) forager was monitored by the Radio-frequency identification system.
View Article and Find Full Text PDFAqueous rechargeable zinc-ion batteries (ZIBs) have attracted burgeoning interests owing to the prospect in large-scale and safe energy storage application. Although manganese oxides are one of the typical cathodes of ZIBs, their practical usage is still hindered by poor service life and rate performance. Here, a MnO -carbon hybrid framework is reported, which is obtained in a reaction between the dimethylimidazole ligand from a rational designed MOF array and potassium permanganate, achieving ultralong-cycle-life ZIBs.
View Article and Find Full Text PDFZn//MnO batteries based on the MnO /Mn conversion reaction mechanism featuring high energy density, safety, and affordable cost are promising in large-scale energy storage application. Nonetheless, the continuous H intercalation at low potential reduces the average output voltage and the energy efficiency, impeding the development of the high-performance zinc battery. In this work, a strategy was proposed of enhancing the cut-off voltage from the perspective of electrochemical parameters, toward high energy efficiency and stable output voltage of the Zn//MnO battery.
View Article and Find Full Text PDFAlthough aqueous zinc-ion batteries (ZIBs) are promising for scalable energy storage application, the actual performance of ZIBs is hampered by the irreversibility. Optimization of electrolyte composition is a relatively practical and facile way to improve coulombic efficiency (CE) and Zn plating/stripping reversibility of ZIBs. N,N-Dimethylacetamide (DMA) has a higher Gutmann donor number (DN) than that of H O, abundant polar groups, and economic price.
View Article and Find Full Text PDFAqueous rechargeable zinc-ion batteries (ZIBs) featuring competitive performance, low cost and high safety hold great promise for applications in grid-scale energy storage and portable electronic devices. Metal-organic frameworks (MOFs), relying on their large framework structure and abundant active sites, have been identified as promising materials in ZIBs. This review comprehensively presents the current development of MOF-based materials including MOFs and their derivatives in ZIBs, which begins with Zn storage mechanism of MOFs, followed by introduction of various types of MOF-based cathode materials (PB and PBA, Mn-based MOF, V-based MOF, conductive MOF and their derivatives), and the regulation approaches for Zn deposition behavior.
View Article and Find Full Text PDFConstructing sophisticated hollow structure and exposing more metal sites in metal-organic frameworks (MOFs) can not only enhance their catalytic performance but also endow them with new functions. Herein, we present a facile coordinative reconstruction strategy to transform Ti-MOF polyhedron into nanosheet-assembled hollow structure with a large amount of exposed metal sites. Importantly, the reconstruction process relies on the esterification reaction between the organic solvent, i.
View Article and Find Full Text PDFCapacitive deionization (CDI) as a novel energy and cost-efficient water treatment technology has attracted increasing attention. The recent development of various faradaic electrode materials has greatly enhanced the performance of CDI as compared with traditional carbon electrodes. Prussian blue (PB) has emerged as a promising CDI electrode material due to its open framework for the rapid intercalation/de-intercalation of sodium ions.
View Article and Find Full Text PDFAlthough aqueous Zn-ion batteries (ZIBs) with low cost and high safety show great potential in large-scale energy storage system, metallic Zn anode still suffers from unsatisfactory cycle stability due to unregulated growth of Zn dendrites, corrosion, and formation of various side products during electrochemical reaction. Here, an ultrafast and simple method to achieve a stable Zn anode is developed. By simply immersing a Zn plate into an aqueous solution of CuSO for only 10-60 s, a uniform and robust protective layer (Zn SO (OH) ·5H O/Cu O) is formed on commercial Zn plate (Zn/ZCO), which enables uniform electric field distribution and controllable dendrite growth, leading to a long-term cycle life of over 1400 h and high average Coulombic efficiency (CE) of 99.
View Article and Find Full Text PDFA high-performance air electrode is essential for the successful application of flexible Zn-air batteries in wearable devices. However, endowing the electrode-electrolyte interface with high stability and fast electron/ion transportation is still a great challenge. Herein, we report a bioinspired interfacial engineering strategy to construct a cactus-like hybrid electrode comprising CoSe2 nanoparticles embedded in an N-doped carbon nanosheet arrays penetrated with carbon nanotubes (CoSe2-NCNT NSA).
View Article and Find Full Text PDFPortable water splitting devices driven by rechargeable metal-air batteries or solar cells are promising, however, their scalable usages are still hindered by lack of suitable multifunctional electrocatalysts. Here, a highly efficient multifunctional electrocatalyst is demonstrated, i.e.
View Article and Find Full Text PDFAqueous zinc-ion batteries (ZIBs) have been considered as prospective alternatives for lithium-ion batteries, which are able to serve as power sources for next-generation wearable and flexible devices, owing to the merits of abundant zinc resources and high safety of aqueous electrolyte. However, the lack of suitable cathode materials with flexibility for ZIBs hinders their further application. Herein, a novel cathode material [i.
View Article and Find Full Text PDFMembrane capacitive deionization (MCDI) is a simple and highly energy efficient method to convert brackish water to clean water. In this work, a high-performance MCDI electrode architecture, which is composed of three-dimensional graphene networks and metal-organic frameworks (MOFs)-derived porous carbon rods, was prepared by a facile method. The obtained electrode material possesses not only the conducting networks for rapid electron transport but also the short diffusion length of ions, which exhibits excellent desalination performance with a high salt removal capacity, i.
View Article and Find Full Text PDFLow-dimensional metal-organic frameworks (LD MOFs) have attracted increasing attention in recent years, which successfully combine the unique properties of MOFs, e.g., large surface area, tailorable structure, and uniform cavity, with the distinctive physical and chemical properties of LD nanomaterials, e.
View Article and Find Full Text PDFCarbon-based materials have attracted intensive attentions for a wide range of energy and environment-related applications. Energy storage/conversion devices with improved performance have been achieved by utilization of metal-organic-framework (MOF)-derived carbon structures as active materials in recent years. However, the effects of MOF precursors on the performance of derived carbon materials are rarely investigated.
View Article and Find Full Text PDFMXenes have emerged as promising electrode materials for microsupercapacitors (MSCs) owing to their high volumetric and areal capacitances. In addition to the development of novel electrode materials, fabrication of interdigital electrodes is another key to realize high-performance MSCs. Herein, we demonstrate the patterning of few-layered TiCT nanosheets on various substrates for MSCs by a facile, fast, and nearly zero-cost 'scratch' strategy.
View Article and Find Full Text PDFGraphene composite fibers are of great importance in constructing electrode materials with high flexibility and conductivity for energy storage and electronic devices. Integration of multifunctional metal-organic frameworks (MOFs) into graphene fiber scaffolds enables novel functions and enhanced physical/chemical properties. The close-packed and aligned graphene sheets along with the porous MOF-derived structures can achieve excellent lithium storage performance through synergetic effects.
View Article and Find Full Text PDFDNA methylation has been proposed to play critical roles in caste fate and behavioral plasticity in bumblebees, however, there is little information on its regulatory mechanisms. Here, we identified six important genes mediating the modification of DNA methylation and determined their expression patterns in the bumblebee Bombus terrestris. There is a complete functional DNA methylation system, including four DNA methyltransferases (DNMT1a, DNMT1b, DNMT2, and DNMT3), a DNA demethylase (Ten-eleven translocation), and a methyl-CpG-binding domain protein in B.
View Article and Find Full Text PDF