IEEE J Biomed Health Inform
December 2024
Glaucoma is one of the major eye diseases that leads to progressive optic nerve fiber damage and irreversible blindness, afflicting millions of individuals. Glaucoma forecast is a good solution to early screening and intervention of potential patients, which is helpful to prevent further deterioration of the disease. It leverages a series of historical fundus images of an eye and forecasts the likelihood of glaucoma occurrence in the future.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2024
Label scarcity, class imbalance and data uncertainty are three primary challenges that are commonly encountered in the semi-supervised medical image segmentation. In this work, we focus on the data uncertainty issue that is overlooked by previous literature. To address this issue, we propose a probabilistic prototype-based classifier that introduces uncertainty estimation into the entire pixel classification process, including probabilistic representation formulation, probabilistic pixel-prototype proximity matching, and distribution prototype update, leveraging principles from probability theory.
View Article and Find Full Text PDFPurpose: The recently proposed sparsifying transform (ST) models incur low computational cost and have been applied to medical imaging. Meanwhile, deep models with nested network structure reveal great potential for learning features in different layers. In this study, we propose a network-structured ST learning approach for X-ray computed tomography (CT), which we refer to as multi-layer clustering-based residual sparsifying transform (MCST) learning.
View Article and Find Full Text PDFPurpose: Signal models based on sparse representations have received considerable attention in recent years. On the other hand, deep models consisting of a cascade of functional layers, commonly known as deep neural networks, have been highly successful for the task of object classification and have been recently introduced to image reconstruction. In this work, we develop a new image reconstruction approach based on a novel multilayer model learned in an unsupervised manner by combining both sparse representations and deep models.
View Article and Find Full Text PDF