The purpose of this study was to investigate the effect of initial particle size (IPS) on the environmental parameters and heavy metal speciation during sludge composting. Three piles were conducted: fine material (FM, screen underflow), coarse material (CM, oversize product), and mixed material (MM, mix FM and CM in 1:1). Results showed that the temperature trends of the three piles in different layers were highly repeatable during the thermophilic period.
View Article and Find Full Text PDFSilicon is considered the most promising candidate for anode material in lithium-ion batteries due to the high theoretical capacity. Unfortunately, the vast volume change and low electric conductivity have limited the application of silicon anodes. In the silicon anode system, the binders are essential for mechanical and conductive integrity.
View Article and Find Full Text PDFInsulating strategies are indispensable for laboratory-scale composting reactors, however, current insulation methods interfere with the aerobic fermentation behaviors related to composting. To address this issue, a centre-oriented real-time temperature compensation strategy was designed in this study. Five 9 L reactors (R1-R5) with different insulation strategies were used for the co-composting of dewatered sludge and Phragmites australis and compared.
View Article and Find Full Text PDF