Publications by authors named "Xikai Jiang"

Single-atom catalysts (SACs) open up new possibilities for advanced technologies. However, a major complication in preparing high-density single-atom sites is the aggregation of single atoms into clusters. This complication stems from the delicate balance between the diffusion and stabilization of metal atoms during pyrolysis.

View Article and Find Full Text PDF

Room-temperature ionic liquids (RTILs) are intriguing fluids that have drawn much attention in applications ranging from tribology and catalysis to energy storage. With strong electrostatic interaction between ions, their interfacial behaviors can be modulated by controlling energetics of the electrified interface. In this work, we report atomic-force-microscope measurements of contact angle hysteresis (CAH) of a circular contact line formed on a micron-sized fiber, which is coated with a thin layer of conductive film and intersects an RTIL-air interface.

View Article and Find Full Text PDF

The diffusion and mobility in biomembranes are crucial for various cell functions; however, the mechanisms involved in such processes remain ambiguous due to the complex membrane structures. Herein, we investigate how the heterogeneous nanostructures cause anomalous diffusion in dipalmitoylphosphatidylcholine (DPPC) monolayers. By identifying the existence of condensed nanodomains and clarifying their impact, our findings renew the understanding of the hydrodynamic description and the statistical feature of the diffusion in the monolayers.

View Article and Find Full Text PDF

The electrokinetic transport of fluids, also called the electroosmotic flow (EOF), in micro/nanoscale devices occurs in promising applications such as electrokinetic energy conversion (EKEC) systems. Recently, EKEC systems grafted with end-charged polyelectrolyte (PE) layers (PELs) have been reported to exhibit higher efficiencies than those of intrinsic systems. Understanding the interplay between the end-charged PELs and electrical double layers (EDLs) on the EOF is crucial for designing highly efficient EKEC systems.

View Article and Find Full Text PDF

Electric-field-driven ion emission from the free surface of a planar room-temperature ionic liquid (RTIL) film was studied by using molecular dynamics simulations. We calculated ion emission rate () as a function of the electric field normal to the RTIL/vacuum surface () and found that the logarithm of over the charge density on the surface (σ) is proportional to , in agreement with classical ion evaporation theories. The composition of emitted ions includes monomers and dimers.

View Article and Find Full Text PDF

The structure and dynamics of confined suspensions of particles of arbitrary shape are of interest in multiple disciplines from biology to engineering. Theoretical studies are often limited by the complexity of long-range particle-particle and particle-wall forces, including many-body fluctuating hydrodynamic interactions. Here, we report a computational study on the diffusion of spherical and cylindrical particles confined in a spherical cavity.

View Article and Find Full Text PDF

Understanding the hydrodynamic properties of polymeric coatings is crucial for the rational design of molecular transport involving polymeric surfaces and is relevant to drug delivery, sieving, molecular separations, etc. It has been found that the hydrodynamic radius of a polymer segment is an order of magnitude smaller than its physical size, but the origin of this effect does not seem to be well understood. Herein, we study the hydrodynamic properties of polymeric coatings by using molecular dynamics simulations, navigated by the continuous Navier-Stokes-Brinkman model.

View Article and Find Full Text PDF

We report a computational strategy to obtain the charges of individual dielectric particles from experimental observation of their interactions as a function of time. This strategy uses evolutionary optimization to minimize the difference between trajectories extracted from the experiment and simulated trajectories based on many-particle force fields. The force fields include both Coulombic interactions and dielectric polarization effects that arise due to particle-particle charge mismatch and particle-environment dielectric contrast.

View Article and Find Full Text PDF

Molecular simulation has emerged as an essential tool for modern-day research, but obtaining proper results and making reliable conclusions from simulations requires adequate sampling of the system under consideration. To this end, a variety of methods exist in the literature that can enhance sampling considerably, and increasingly sophisticated, effective algorithms continue to be developed at a rapid pace. Implementation of these techniques, however, can be challenging for experts and non-experts alike.

View Article and Find Full Text PDF

An efficient parallel Stokes' solver has been developed for complete description of hydrodynamic interactions between Brownian particles in bulk and confined geometries. A Langevin description of the particle dynamics is adopted, where the long-range interactions are included using a Green's function formalism. A scalable parallel computational approach is presented, where the general geometry Stokeslet is calculated following a matrix-free algorithm using the general geometry Ewald-like method.

View Article and Find Full Text PDF

Complete removal of water from room-temperature ionic liquids is nearly impossible. For the electrochemical applications of ionic liquids, how water is distributed in the electrical double layers when the bulk liquids are not perfectly dry can potentially determine whether key advantages of ionic liquids, such as a wide electrochemical window, can be harnessed in practical systems. In this paper, we study the adsorption of water on electrode surfaces in contact with humid, imidazolium-based ionic liquids using molecular dynamics simulations.

View Article and Find Full Text PDF

We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev.

View Article and Find Full Text PDF